Ítem
Acceso Abierto

Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices

dc.contributor.advisorArtigiani, Mauro
dc.contributor.advisorMartínez, Cristian
dc.creatorBermúdez Guzmán, Juliana
dc.creator.degreeProfesional en Matemáticas Aplicadas y Ciencias de la Computación
dc.creator.degreeProfesional en Matemáticas Aplicadas y Ciencias de la Computación
dc.creator.degreeLevelPregrado
dc.date.accessioned2025-06-19T14:33:07Z
dc.date.available2025-06-19T14:33:07Z
dc.date.created2025-06-09
dc.descriptionIn this thesis, we investigate the asymptotic behavior of products of random matrices through Lyapunov exponents. Our theoretical framework is grounded in Kingman’s Subadditive Ergodic Theorem, from which we derive the Furstenberg-Kesten Theorem and Oseledets’ Theorem in two dimensions. These results provide the tools to quantify exponential growth rates and directional behavior in random matrix products. To visualize our theoretical conclusions, we present a series of simulations that illustrate the emergence of Lyapunov exponents and their predictive power in practical settings.
dc.description.abstractIn this thesis, we investigate the asymptotic behavior of products of random matrices through Lyapunov exponents. Our theoretical framework is grounded in Kingman’s Subadditive Ergodic Theorem, from which we derive the Furstenberg-Kesten Theorem and Oseledets’ Theorem in two dimensions. These results provide the tools to quantify exponential growth rates and directional behavior in random matrix products. To visualize our theoretical conclusions, we present a series of simulations that illustrate the emergence of Lyapunov exponents and their predictive power in practical settings.
dc.format.extent40 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_45741
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/45741
dc.language.isoeng
dc.publisherUniversidad del Rosario
dc.publisher.departmentEscuela de Ingeniería, Ciencia y Tecnología
dc.publisher.programPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACC
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.bibliographicCitationRobert G. Bartle. The Elements of Integration and Lebesgue Measure. 1st ed. Wiley Clas- sics Library v.92. Hoboken: John Wiley & Sons, Incorporated, 1995. 1 p. isbn: 9780471042228 9781118164488.
dc.source.bibliographicCitationWalter Rudin. Real and complex analysis. 3. ed., internat. ed., [Nachdr.] McGraw-Hill international editions Mathematics series. New York, NY: McGraw-Hill, 2013. 416 pp. isbn: 978-0-07-100276-9 978-0-07-054234-1.
dc.source.bibliographicCitationDonald L. Cohn. Measure Theory: Second Edition. Birkhäuser Advanced Texts Basler Lehrbücher. New York, NY: Springer New York, 2013. isbn: 978-1-4614-6955-1 978-1- 4614-6956-8. doi: 10.1007/978-1-4614-6956-8. url: https://link.springer.com/ 10.1007/978-1-4614-6956-8 (visited on 08/14/2024).
dc.source.bibliographicCitationElias M. Stein and Rami Shakarchi. Real analysis: measure theory, integration, and Hilbert spaces. Princeton lectures in analysis v. 3. Princeton, N.J: Princeton University Press, 2005. 402 pp. isbn: 9780691113869.
dc.source.bibliographicCitationManfred Einsiedler and Thomas Ward. Ergodic Theory: with a view towards Number The- ory. London: Springer London, 2011. isbn: 978-0-85729-020-5 978-0-85729-021-2. doi: 10.1007/978- 0- 85729- 021- 2. url: https://link.springer.com/10.1007/978- 0-85729-021-2 (visited on 08/14/2024).
dc.source.bibliographicCitationDaniel W. Stroock. Probability theory: an analytic view. 2nd ed. Cambridge New York: Cambridge University Press, 2011. 1 p. isbn: 978-0-521-76158-1 978-0-511-97424-3 978-1- 139-01188-4
dc.source.bibliographicCitationSheldon M. Ross. Introduction to probability models. Tenth edition. Amsterdam Boston: Academic Press, an imprint of Elsevier, 2010. 1 p. isbn: 978-0-12-375686-2 978-0-12- 375687-9.
dc.source.bibliographicCitationDimitri P. Bertsekas and John N. Tsitsiklis. Introduction to probability. 2nd ed. Optimiza- tion and computation series. Belmont: Athena scientific, 2008. isbn: 978-1-886529-23-6.
dc.source.bibliographicCitationPatrick Billingsley. Probability and measure. 3rd ed. Wiley series in probability and math- ematical statistics. New York: Wiley, 1995. 593 pp. isbn: 978-0-471-00710-4.
dc.source.bibliographicCitationPaul E. Pfeiffer. Probability for Applications. Springer Texts in Statistics. New York, NY: Springer New York, 1990. 679 pp. isbn: 978-1-4615-7676-1. doi: 10.1007/978-1-4615- 7676-1.
dc.source.bibliographicCitationQueen Mary University of London. Lecture 2: Second Language Acquisition. https:// qmplus . qmul . ac . uk / pluginfile . php / 2470175 / mod _ resource / content / 13 / L2 - 2022.pdf. Accessed: 2025-04-21. 2022.
dc.source.bibliographicCitationAlessandro Rinaldo. Lecture Notes: February 20, 2018. https://www.stat.cmu.edu/ ~arinaldo/Teaching/36752/S18/Scribed_Lectures/Feb20.pdf. Scribed lecture notes for 36-752: Advanced Probability Overview, Spring 2018, Carnegie Mellon University. 2018.
dc.source.bibliographicCitationDavid A. Stephens. The Borel-Cantelli Lemma. https://www.math.mcgill.ca/dstephens/ OldCourses/556-2006/Math556-BorelCantelli.pdf. Lecture notes for Math 556: Math- ematical Statistics I, McGill University. 2006.
dc.source.bibliographicCitationJeffrey S. Rosenthal. A first look at rigorous probability theory. 2. ed., reprinted. New Jersey: World Scientific, 2010. 219 pp. isbn: 978-981-270-371-2.
dc.source.bibliographicCitationMarcelo Viana. Lectures on Lyapunov exponents. Cambridge studies in advanced math- ematics 145. Cambridge ; New York: Cambridge University Press, 2014. 202 pp. isbn: 978-1-107-08173-4.
dc.source.bibliographicCitationPeter Walters. An introduction to ergodic theory. 1. softcover printing. Graduate texts in mathematics 79. New York: Springer, 2000. 250 pp. isbn: 9780387951522.
dc.source.bibliographicCitationArtur Avila and Jairo Bochi. “On the Subadditive Ergodic Theorem”. In: Ergodic The- ory and Dynamical Systems 29.1 (Jan. 2009). Publisher: Cambridge University Press,pp. 1–16. doi: 10 . 1017 / S014338570800067X. url: https : / / doi . org / 10 . 1017 / S014338570800067X.
dc.source.bibliographicCitationHillel Furstenberg and Harry Kesten. “Products of Random Matrices”. In: The Annals of Mathematical Statistics 31.2 (June 1960), pp. 457–469. issn: 0003-4851. doi: 10.1214/ aoms/1177705909. url: http://projecteuclid.org/euclid.aoms/1177705909 (visited on 08/14/2024).
dc.source.bibliographicCitationWalter Rudin. Functional analysis. 2nd ed. International series in pure and applied math- ematics. New York: McGraw-Hill, 1991. 424 pp. isbn: 9780070542365.
dc.source.bibliographicCitationJean H. Gallier. Geometric methods and applications: for computer science and engineer- ing. 2nd ed. Texts in applied mathematics 38. New York: Springer, 2011. 680 pp. isbn: 9781441999603 9781441999610.
dc.source.bibliographicCitationGeon Ho Choe. Computational ergodic theory. Algorithms and computation in mathemat- ics v. 13. Berlin: Springer, 2005. 453 pp. isbn: 978-3-540-23121-9.
dc.source.bibliographicCitationWalter Gander. Algorithms for the QR-Decomposition. Tech. rep. 80-021. Re-typed in LATEX in October 2003, In memory of Prof. H. Rutishauser. Zürich, Switzerland: Seminar für Angewandte Mathematik, Eidgenössische Technische Hochschule, 1980. url: https: //people.inf.ethz.ch/gander/papers/qrneu.pdf.
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectExponentes de Lyapunov
dc.subjectMatrices aleatorios
dc.subjectCaos
dc.subjectTeoría ergódica
dc.subject.keywordLyapunov Exponents
dc.subject.keywordRandom Matrices
dc.subject.keywordChaos
dc.subject.keywordErgodic Theory
dc.titleLyapunov Exponents to Predict the Behavior of the Product of Random Matrices
dc.title.TranslatedTitleExponentes de Lyapunov para predecir el comportamiento del producto de matrices aleatorias
dc.typebachelorThesis
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de grado
local.department.reportEscuela de Ingeniería, Ciencia y Tecnología
local.regionesBogotá
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Lyapunov_Exponents_to_Predict_Bermudez_Guzman_Juliana.pdf
Tamaño:
651.71 KB
Formato:
Adobe Portable Document Format
Descripción: