Ítem
Acceso Abierto

Proceso heurístico de toma de decisiones estratégicas relacionadas con innovación en tiempos de crisis
dc.creator | Montes de la Barrera, José Orlando | |
dc.creator | Sánchez, Sergio Daniel | |
dc.date.accessioned | 2023-06-06T16:48:34Z | |
dc.date.available | 2023-06-06T16:48:34Z | |
dc.date.created | 2023-06-06 | |
dc.description | Distintas investigaciones han avanzado en la exploración de las decisiones que las empresas han tomado e implementado para hacer frente a la crisis socio-económica generada por la pandemia de covid-19. Sin embargo, poco han examinado sobre un asunto clave, el proceso de toma de decisiones en dicho contexto. A través del estudio de 22 organizaciones de los sectores industria, comercio y servicios, la presente investigación desarrolló un framework teórico para entender cómo es el proceso de toma de decisiones relacionadas con innovación en contextos de crisis al interior de las organizaciones: proceso heurístico decisorio. En este, varios de los pasos del proceso de toma de decisiones se desarrollan en sincronía con otros, y de manera ágil, simultánea, iterativa, con información incompleta y bajo un entorno de alta incertidumbre. Los hallazgos del framework desarrollado contribuyen a las investigaciones sobre organizational y naturalistic decisión making; específicamente esta investigación ofrece un lente teórico actual sobre cómo en las organizaciones se toman decisiones relacionadas con innovación en tiempos de crisis. | |
dc.description.abstract | Different investigations have advanced in exploring the decisions that companies have taken and implemented to deal with the crisis socio-economic generated by the covid-19 pandemic. However, little has been examined on a key issue, the decision-making process in that context. Through the study of 22 organizations from the industry, commerce and services sectors, this research developed a theoretical framework to understand what the decision-making process related to innovation is like in crisis contexts within organizations: decision-making heuristic process. In this, several of the steps of the decision-making process are developed in synchrony with others, and in an agile, simultaneous, iterative manner, with incomplete information and under an environment of high uncertainty. The findings of the developed framework contribute to research on organizational and naturalistic decision making; Specifically, this research offers a current theoretical lens on how decisions related to innovation are made in organizations in times of crisis. | |
dc.format.extent | 38 pp | |
dc.format.mimetype | application/pdf | |
dc.format.tipo | Documento | spa |
dc.identifier.issn | 2463-1892 | |
dc.identifier.uri | https://repository.urosario.edu.co/handle/10336/39444 | |
dc.language.iso | spa | |
dc.publisher | Universidad del Rosario | spa |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.accesRights | info:eu-repo/semantics/openAccess | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.source.bibliographicCitation | Abdulrahman, M. D.-A., Subramanian, N., Liu, C., & Shu, C. (2015). Viability of remanufacturing practice: A strategic decision making framework for Chinese auto-parts companies. Journal of Cleaner Production, 105, 311-323. https://doi.org/10.1016/j.jclepro.2014.02.065 | |
dc.source.bibliographicCitation | Aguinis, H., Ramani, R. S., & Alabduljader, N. (2018). What you see is what you get? Enhancing methodological transparency in management research. Academy of Management Annals, 12(1), 83-110. https://doi. org/10.5465/annals.2016.0011 | |
dc.source.bibliographicCitation | Arendt, L. A., Priem, R. L., & Ndofor, H. A. (2005). A ceo-Adviser model of strategic decision making. Journal of Management, 31(5), 680-699. https://doi.org/10.1177/0149206305279054 | |
dc.source.bibliographicCitation | Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55(1), 30-40. https://doi.org/10.1016/j.bandc.2003.04.001 | |
dc.source.bibliographicCitation | Berthon, P., Nairn, A., & Money, A. (2003). Through the paradigm funnel: A conceptual tool for literature analysis. Marketing Education Review, 13(2), 55-66. https://doi.org/10.1080/10528008.2003.11488830 | |
dc.source.bibliographicCitation | Boulding, W., Moore, M. C., Staelin, R., Corfman, K. P., Dickson, P. R., Fitzsimons, G., Gupta, S., Lehmann, D. R., Mitchell, D. J., Urbany, J. E., & Weitz, B. A. (1994). Understanding managers’ strategic decision- making process. Marketing Letters, 5(4), 413-426. https://doi. org/10.1007/BF00999214 | |
dc.source.bibliographicCitation | Bricka, T. M., He, Y., & Schroeder, A. N. (2022). Difficult times, difficult decisions: Examining the impact of perceived crisis response strategies during covid-19. Journal of Business and Psychology, 1-21. https://doi. org/10.1007/s10869-022-09851-x | |
dc.source.bibliographicCitation | Capelo, C., & Dias, J. F. (2009). A feedback learning and mental models perspective on strategic decision making. Educational Technology Research and Development, 57(5), 629-644. https://doi.org/10.1007/ s11423-009-9123-z | |
dc.source.bibliographicCitation | Cohen, M. D., March, J. G., & Olsen, J. P. (1972). A garbage can model of organizational choice. Administrative Science Quarterly, 17(1), 1-25. https://doi.org/10.2307/2392088 | |
dc.source.bibliographicCitation | Denzin, N. K. (1978). The research act: A theoretical introduction to sociological methods. McGraw-Hill. | |
dc.source.bibliographicCitation | Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021 | |
dc.source.bibliographicCitation | Eisenhardt, K. (1989). Building theories from case study research. The Academy of Management Review, 14(4), 532-550. https://doi. org/10.2307/258557 | |
dc.source.bibliographicCitation | Eisenhardt, K. (2021). What is the Eisenhardt method, really? Strategic Organization, 19(1), 147-160. https://doi.org/10.1177/1476127020982866 | |
dc.source.bibliographicCitation | Eisenhardt, K., & Graebner, M. (2007). Theory building from cases: Opportunities and challenges. Academy of Management Journal, 50(1), 25-32. https://doi.org/10.5465/amj.2007.24160888 | |
dc.source.bibliographicCitation | Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. Journal of Cleaner Production, 98, 66-83. https://doi.org/10.1016/j.jclepro.2013.06.046 | |
dc.source.bibliographicCitation | Grigoriev, S. (2022). Reason, language, history: Pragmatism’s contested promise. Metaphilosophy, 53(4), 431-445. https://doi.org/10.1111/ meta.12575 | |
dc.source.bibliographicCitation | Haddaway, N. R., Grainger, M. J., & Gray, C. T. (2022). Citationchaser: A tool for transparent and efficient forward and backward citation chasing in systematic searching. Research Synthesis Methods, 13(4), 533-545. https://doi.org/10.1002/jrsm.1563 | |
dc.source.bibliographicCitation | Häubl, G., & Trifts, V. (2000). Consumer decision making in online shopping environments: The effects of interactive decision aids. Marketing Science, 19(1), 4-21. https://doi.org/10.1287/mksc.19.1.4.15178 | |
dc.source.bibliographicCitation | Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16-24. https://doi. org/10.1016/j.ejor.2009.05.009 | |
dc.source.bibliographicCitation | Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007 | |
dc.source.bibliographicCitation | Jick, T. D. (1979). Mixing qualitative and quantitative methods: Triangulation in action. Administrative Science Quarterly, 24(4), 602-611. https:// doi.org/10.2307/2392366 | |
dc.source.bibliographicCitation | Langley, A. (1999). Strategies for theorizing from process data. Academy of Management Review, 24(4), 691-710. https://doi.org/10.2307/259349 | |
dc.source.bibliographicCitation | Langley, A., Smallman, C., Tsoukas, H., & Van de Ven, A. H. (2013). Process studies of change in organization and management: Unveiling temporality, activity, and flow. Academy of Management Journal, 56(1), 1-13. https://doi.org/10.5465/amj.2013.4001 | |
dc.source.bibliographicCitation | Liberman-Yaconi, L., Hooper, T., & Hutchings, K. (2010). Toward a model of understanding strategic decision-making in micro-firms: Exploring the Australian information technology sector. Journal of Small Business Management, 48(1), 70-95. https://doi.org/10.1111/j.1540- 627X.2009.00287.x | |
dc.source.bibliographicCitation | Lipshitz, R., Klein, G., Orasanu, J., & Salas, E. (2001). Taking stock of naturalistic decision making. Journal of Behavioral Decision Making, 14(5), 331-352. https://doi.org/10.1002/bdm.381 | |
dc.source.bibliographicCitation | Lyles, M. A., & Thomas, H. (1988). Strategic problem formulation: Biases and assumptions embedded in alternative decision-making models. Journal of Management Studies, 25(2), 131-145. https://doi. org/10.1111/j.1467-6486.1988.tb00028.x | |
dc.source.bibliographicCitation | Lyon, D. W., Lumpkin, G. T., & Dess, G. G. (2000). Enhancing entrepreneurial orientation research: Operationalizing and measuring a key strategic decision-making process. Journal of Management, 26(5), 1055-1085. https://doi.org/10.1177/014920630002600503 | |
dc.source.bibliographicCitation | McDonald, R. M., & Eisenhardt, K. M. (2020). Parallel Play: Startups, nascent markets, and effective business-model design. Administrative Science Quarterly, 65(2), 483-523. https://doi.org/10.1177/0001839219852349 | |
dc.source.bibliographicCitation | Miles, M., Huberman, A., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook. sage. | |
dc.source.bibliographicCitation | Patton, M. (2002). Qualitative research and evaluation methods. sage. | |
dc.source.bibliographicCitation | Patton, M. (2014). Qualitative research and evaluation methods. sage. | |
dc.source.bibliographicCitation | Rahman, N., & De Feis, G. L. (2009). Strategic decision-making: Models and methods in the face of complexity and time pressure. Journal of General Management, 35(2), 43-59. https://doi.org/10.1177/030630700903500204 | |
dc.source.bibliographicCitation | Roulston, K. (2010). Reflective interviewing: A guide to theory and practice. sage. | |
dc.source.bibliographicCitation | Rubin, H., & Rubin, I. (2005). Qualitative interviewing. sage. | |
dc.source.bibliographicCitation | Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7-59. https://doi.org/10.1007/ BF00055564 | |
dc.source.bibliographicCitation | Silverman, D. (2018). Doing qualitative research. sage. | |
dc.source.bibliographicCitation | Singh, N. P., & Singh, S. (2019). Building supply chain risk resilience: Role of big data analytics in supply chain disruption mitigation. Benchmarking, 26(7), 2318-2342. https://doi.org/10.1108/BIJ-10-2018-0346 | |
dc.source.bibliographicCitation | Wu, Z., & Pagell, M. (2011). Balancing priorities: Decision-making in sustainable supply chain management. Journal of Operations Management, 29(6), 577-590. https://doi.org/10.1016/j.jom.2010.10.001 | |
dc.source.bibliographicCitation | Xia, D., Yu, Q., Gao, Q., & Cheng, G. (2017). Sustainable technology selection decision-making model for enterprise in supply chain: Based on a modified strategic balanced scorecard. Journal of Cleaner Production, 141, 1337-1348. https://doi.org/10.1016/j.jclepro.2016.09.083 | |
dc.source.bibliographicCitation | Zavadskas, E. K., & Turskis, Z. (2011). Multiple criteria decision making (mcdm) methods in economics: An overview. Technological and Economic Development of Economy, 17(2), 397-427. https://doi.org/10.38 46/20294913.2011.593291 | |
dc.source.instname | instname:Universidad del Rosario | spa |
dc.source.reponame | reponame:Repositorio Institucional EdocUR | spa |
dc.subject | Decisiones estratégicas | |
dc.subject | Innovación | |
dc.subject | Crisis | |
dc.subject | Framework | |
dc.subject | Proceso heurístico | |
dc.subject.keyword | Strategic decisions | |
dc.subject.keyword | Innovation | |
dc.subject.keyword | Crisis | |
dc.subject.keyword | Framework | |
dc.subject.keyword | Heuristic process | |
dc.title | Proceso heurístico de toma de decisiones estratégicas relacionadas con innovación en tiempos de crisis | |
dc.type | article | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Proceso-heuristico-de-toma-de-decisiones-BI-161.pdf
- Tamaño:
- 604.31 KB
- Formato:
- Adobe Portable Document Format
- Descripción: