Ítem
Solo Metadatos
Distributed optimization with information-constrained population dynamics
dc.creator | Pantoja, A. | spa |
dc.creator | Obando Bravo, Germán Dario | spa |
dc.creator | Quijano, N. | spa |
dc.date.accessioned | 2020-05-25T23:56:39Z | |
dc.date.available | 2020-05-25T23:56:39Z | |
dc.date.created | 2019 | spa |
dc.description.abstract | In a multi-agent framework, distributed optimization problems are generally described as the minimization of a global objective function, where each agent can get information only from a neighborhood defined by a network topology. To solve the problem, this work presents an information-constrained strategy based on population dynamics, where payoff functions and tasks are assigned to each node in a connected graph. We prove that the so-called distributed replicator equation (DRE) converges to an optimal global outcome by means of the local-information exchange subject to the topological constraints of the graph. To show the application of the proposed strategy, we implement the DRE to solve an economic dispatch problem with distributed generation. We also present some simulation results to illustrate the theoretic optimality and stability of the equilibrium points and the effects of typical network topologies on the convergence rate of the algorithm. © 2018 The Franklin Institute | eng |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | https://doi.org/10.1016/j.jfranklin.2018.10.016 | |
dc.identifier.issn | 160032 | |
dc.identifier.uri | https://repository.urosario.edu.co/handle/10336/22477 | |
dc.language.iso | eng | spa |
dc.publisher | Elsevier Ltd | spa |
dc.relation.citationEndPage | 236 | |
dc.relation.citationIssue | No. 1 | |
dc.relation.citationStartPage | 209 | |
dc.relation.citationTitle | Journal of the Franklin Institute | |
dc.relation.citationVolume | Vol. 356 | |
dc.relation.ispartof | Journal of the Franklin Institute, ISSN:160032, Vol.356, No.1 (2019); pp. 209-236 | spa |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056770633&doi=10.1016%2fj.jfranklin.2018.10.016&partnerID=40&md5=dde8ddc9deaa962c31b86b6837a52eb6 | spa |
dc.rights.accesRights | info:eu-repo/semantics/openAccess | |
dc.rights.acceso | Abierto (Texto Completo) | spa |
dc.source.instname | instname:Universidad del Rosario | spa |
dc.source.reponame | reponame:Repositorio Institucional EdocUR | spa |
dc.subject.keyword | Constrained optimization | spa |
dc.subject.keyword | Electric load dispatching | spa |
dc.subject.keyword | Graph theory | spa |
dc.subject.keyword | Multi agent systems | spa |
dc.subject.keyword | Population dynamics | spa |
dc.subject.keyword | Scheduling | spa |
dc.subject.keyword | Convergence rates | spa |
dc.subject.keyword | Distributed optimization | spa |
dc.subject.keyword | Economic dispatch problems | spa |
dc.subject.keyword | Equilibrium point | spa |
dc.subject.keyword | Global objective functions | spa |
dc.subject.keyword | Local information | spa |
dc.subject.keyword | Multiagent framework | spa |
dc.subject.keyword | Topological constraints | spa |
dc.subject.keyword | Problem solving | spa |
dc.title | Distributed optimization with information-constrained population dynamics | spa |
dc.type | article | eng |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
dc.type.spa | Artículo | spa |