Ítem
Acceso Abierto

Diversity of mycorrhizal types along altitudinal gradients in mountain tropical forests of northern South America

dc.contributor.advisorBottin, Marius
dc.creatorRendón Espinosa, Miguel Ángel
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-08-20T20:15:52Z
dc.date.available2020-08-20T20:15:52Z
dc.date.created2020-07-17
dc.descriptionLos hongos micorrízicos juegan un papel clave en el funcionamiento de los ecosistemas terrestres. Los principales tipos de asociaciones de micorrizas son micorrizas arbusculares (AM), ectomicorrizas (EcM), micorrizas ericoides (ErM) y micorrizas de orquídeas (OM). Estudios anteriores han demostrado que la abundancia de plantas AM, ECM y ErM cambia gradualmente a lo largo de gradientes latitudinales y altitudinales impulsados ​​por los efectos del clima en la descomposición, reflejados en la acumulación de carbono y nutrientes en el suelo. La cordillera de los Andes colombianos alcanza altitudes superiores a los 5.000 my es un gran sistema para probar los efectos de la altitud en los ecosistemas tropicales. Nuestro objetivo fue comprender cómo la altitud y las condiciones climáticas y del suelo dan forma a los patrones de distribución de los tipos de micorrizas en las especies de plantas distribuidas en esta región. Para probar esto, usamos una base de datos de registros de plantas de herbario y asignamos el tipo de micorrizas según la literatura disponible. También utilizamos variables bioclimáticas y edáficas a una resolución de 10 km. Calculamos la proporción de cada uno de los diferentes tipos de asociaciones de micorrizas por celda de cuadrícula y creamos un índice de diversidad para explorar su distribución espacial y su asociación con factores abióticos basados ​​en GLM. Encontramos que la diversidad de asociaciones de micorrizas aumenta con la altitud y la reserva de carbono del suelo.spa
dc.description.abstractMycorrhizal fungi play key roles in the functioning of terrestrial ecosystems. The main types of mycorrhizal associations are arbuscular mycorrhizas (AM), ectomycorrhizas (EcM), ericoid mycorrhizas (ErM) and orchid mycorrhizas (OM). Previous studies have shown that the abundance of AM, EcM and ErM plants change gradually along latitudinal and altitudinal gradients driven by the effects of climate on decomposition, reflected in the accumulation of carbon and nutrients in the soil. The Colombian Andean mountain range reaches altitudes over 5,000 m and it is a great system to test the effects of altitude in tropical ecosystems. We aimed to understand how altitude and climatic and soil conditions shape the distribution patterns of mycorrhizal types in plant species distributed in this region. To test this, we used an herbarium plant record database and assigned mycorrhizal type based on the available literature. We also used bioclimatic and soil variables at a resolution of 10 km. We calculated the proportion of each of the different mycorrhizal associations types per grid cell and created a diversity index to explore their spatial distribution and their association with abiotic factors based on GLMs. We found that the diversity of mycorrhizal associations increases with altitude and soil carbon stock.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_28203
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/28203
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationAverill, C., Turner, B. L., and Finzi, A. C. (2014). Mycorrhiza‐mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543–545. https ://doi.org/10.1038/nature12901spa
dc.source.bibliographicCitationBarceló, M., van Bodegom, P. M., and Soudzilovskaia, N. A. (2019). Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. Journal of Ecology, 107(6), 2564-2573spa
dc.source.bibliographicCitationBarón, J. D. (2010). Geografía económica de los Andes Occidentales de Colombia (No. 006841). Banco de la República-Economía Regional.spa
dc.source.bibliographicCitationBennett, J. A., Maherali, H., Reinhart, K. O., Lekberg, Y., Hart, M. M., and Klironomos, J. (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355(6321), 181-184spa
dc.source.bibliographicCitationBonilla, H. (2001). Minería, mano de obra, y circulación monetaria en los Andes colombianos del siglo XVII. Fronteras de la Historia, (6), 142-158.spa
dc.source.bibliographicCitationBottin, M., Peyre, G., Vargas, C., Raz, L., Richardson, J. E., and Sanchez, A. Phytosociological data and herbarium collections show congruent large scale patterns but differ in their local descriptions of community composition. Journal of Vegetation Science.spa
dc.source.bibliographicCitationBrundrett, M. C., and Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220(4), 1108-1115.spa
dc.source.bibliographicCitationCheeke, T. E., Phillips, R. P., Brzostek, E. R., Rosling, A., Bever, J. D., and Fransson, P. (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214(1), 432-442spa
dc.source.bibliographicCitationCorrales, A., Mangan, S. A., Turner, B. L., and Dalling, J. W. (2016). An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters, 19(4), 383-392spa
dc.source.bibliographicCitationDuque, A., Álvarez, E., Rodríguez, W., and Lema, Á. (2013). Impacto de la fragmentación en la diversidad de plantas vasculares en bosques andinos del nororiente de Colombia. Colombia Forestal, 16(2), 115-137spa
dc.source.bibliographicCitationGALINDO, R., BETANCUR, J., and CADENA, J. J. (2003). Estructura y composición florística de cuatro bosques andinos del santuario de flora y fauna Guanentá-alto río Fonce, cordillera oriental colombiana. Caldasia, 25(2), 313-335.spa
dc.source.bibliographicCitationKlironomos, J., Zobel, M., Tibbett, M., Stock, W. D., Rillig, M. C.,. Parrent, J. L., … Bever, J. D. (2011). Forces that structure plant communities: Quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 189, 366–370. https ://doi. org/10.1111/j.1469-8137.2010.03550.xspa
dc.source.bibliographicCitationKlironomos, J., Zobel, M., Tibbett, M., Stock, W. D., Rillig, M. C.,. Parrent, J. L., … Bever, J. D. (2011). Forces that structure plant communities: Quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 189, 366–370. https ://doi. org/10.1111/j.1469-8137.2010.03550.xspa
dc.source.bibliographicCitationLegendre, P. (2008). Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 1(1), 3-8spa
dc.source.bibliographicCitationLeifheit, E. F., Veresoglou, S. D., Lehmann, A., Morris, E. K., and Rillig, M.C. (2013). Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta‐analysis. Plant and Soil, 374, 523–537. https ://doi.org/10.1007/s11104-013-1899-2.spa
dc.source.bibliographicCitationMantilla, L. C., Mendoza, H., Bissig, T., and Craig, H. (2011). Nuevas evidencias sobre el magmatismo Miocenico en el distrito minero de Vetas-California (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología, 33(1).spa
dc.source.bibliographicCitationMcguire, K., Henkel, T., De La Cerda, I. G., Villa, G., Edmund, F., and Andrew, C. (2008). Dual mycorrhizal colonization of forest‐dominating tropical trees and the mycorrhizal status of non‐dominant tree and liana species. Mycorrhiza, 18, 217–222. https ://doi.org/10.1007/ s00572-008-0170-9spa
dc.source.bibliographicCitationRead, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–391. https ://doi.org/10.1007/BF019 72080spa
dc.source.bibliographicCitationRead, D. J. (1996). The structure and function of the ericoid mycorrhizal root. Annals of Botany, 77(4), 365-374.spa
dc.source.bibliographicCitationRead, D. J., Leake, J. R., and Perez‐Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 82, 1243–1263. https ://doi.org/10.1139/b04-123spa
dc.source.bibliographicCitationRestrepo, J. O. V., Maniguaje, N. L., and Duque, Á. J. (2012). Diversidad y dinámica de un bosque subandino de altitud en la región norte de los Andes colombianos. Revista de Biología Tropical, 60(2), 943-952spa
dc.source.bibliographicCitationRodríguez, N., Armenteras, D., Morales, M., and Romero, M. (2004). Ecosistemas de los Andes colombianos (No. 333.950986 E19).spa
dc.source.bibliographicCitationSiavosh, S., Rivera, J. M., and Gómez, M. E. (2000). Impacto de sistemas de ganadería sobre las características físicas, químicas y biológicas de suelos en los Andes de Colombia. Agroforestería para la Producción Animal en Latinoamérica. FAO-CIPAV, Cali, Colombia, 77-95.spa
dc.source.bibliographicCitationSmith, S. E., and Read, D. J. (2008). Mycorrhizal symbiosis. London, UK: Academic Press.spa
dc.source.bibliographicCitationSteidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D., Reich, P. B., ... and Herault, B. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404.spa
dc.source.bibliographicCitationTedersoo, L., and Brundrett, M. C. (2017). Evolution of ectomycorrhizal symbiosis in plants. In Biogeography of mycorrhizal symbiosis (pp. 407-467). Springer, Cham.spa
dc.source.bibliographicCitationvan de Weg, M. J., Meir, P., Grace, J., and Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology and Diversity, 2(3), 243-254spa
dc.source.bibliographicCitationVan Der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf‐Engel, R., Boller, T., … Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69. https ://doi.org/10.1038/23932.spa
dc.source.bibliographicCitationVeblen, T. T., Young, K. R., and Orme, A. R. (Eds.). (2015). The physical geography of South America. Oxford University Press.spa
dc.source.bibliographicCitationVeresoglou, S. D., Chen, B., and Rillig, M. C. (2012). Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 46, 53–62. https ://doi.org/10.1016/j.soilb io.2011.11.018.spa
dc.source.bibliographicCitationVetrovsky, T., Morais, D., Kohout, P., Lepinay, C., Gallardo, C. A., Holla, S. A., ... and Human, Z. R. (2020). GlobalFungi: Global database of fungal records from high-throughput-sequencing metabarcoding studies. bioRxiv.spa
dc.source.bibliographicCitationWang, B., and Qiu, Y.-L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16(5), 299–363. doi:10.1007/s00572-005-0033-6; Harley, J. L., and Harley, E. L. (1987). A check-list of mycorrhiza in the British flora.spa
dc.source.bibliographicCitationXu, H., Detto, M., Fang, S., Chazdon, R. L., Li, Y., Hau, B. C., ... and Uriarte, M. (2020). Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications biology, 3(1), 1-8.spa
dc.source.bibliographicCitationPhillips, R. P., Brzostek, E., and Midgley, M. G. (2013). The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist, 199(1), 41-51.spa
dc.source.bibliographicCitationUnger, M., Homeier, J., and Leuschner, C. (2012). Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 170(1), 263-274.spa
dc.source.bibliographicCitationXu, H., Detto, M., Li, Y., Li, Y., He, F., and Fang, S. (2019). Do N‐fixing legumes promote neighbouring diversity in the tropics? Journal of Ecology, 107(1), 229-239.spa
dc.source.bibliographicCitationGrizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., and Cresson, R. (2017). Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2(1), 1-8.spa
dc.source.bibliographicCitationRangel, J. O. (2005). La biodiversidad de Colombia. Palimpsestvs, (5)spa
dc.source.bibliographicCitationde Oliveira, R. A., Ramos, M. M., and de Aquino, L. A. (2015). Irrigation management. In Sugarcane (pp. 161-183). Academic Press.spa
dc.source.bibliographicCitationSoudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., ... and Tedersoo, L. (2020). FungalRoot: global online database of plant mycorrhizal associations. New Phytologistspa
dc.source.bibliographicCitationNasto, M. K., Alvarez‐Clare, S., Lekberg, Y., Sullivan, B. W., Townsend, A. R., and Cleveland, C. C. (2014). Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology Letters, 17(10), 1282-1289spa
dc.source.bibliographicCitationSmith, S. E., and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual review of plant biology, 62, 227-250spa
dc.source.bibliographicCitationGavito, M. E., and Azcón–Aguilar, C. (2012). Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agricultural and Food Science, 21(1), 2-11spa
dc.source.bibliographicCitationGonzález‐Caro, S., Duque, Á., Feeley, K. J., Cabrera, E., Phillips, J., Ramirez, S., and Yepes, A.(2020) The legacy of biogeographic history on the composition and structure of Andean forests. Ecologyspa
dc.source.bibliographicCitationGonzález, C., Jarvis, A., and Palacio, J. D. (2006). Biogeography of the Colombian oak, Quercus humboldtii Bonpl: geographical distribution and their climatic adaptation. International Centre for Tropical Agriculture (CIAT)/Museo de Historia Natural, Universidad del Cauca. Popayán.spa
dc.source.bibliographicCitationJansa, J., Finlay, R., Wallander, H., Smith, F. A., and Smith, S. E. (2011). Role of mycorrhizal symbioses in phosphorus cycling. In Phosphorus in action (pp. 137-168). Springer, Berlin, Heidelberg.spa
dc.source.bibliographicCitationPhillips, R. P., Brzostek, E., and Midgley, M. G. (2013). The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist, 199(1), 41-51spa
dc.source.bibliographicCitationRead, D. J., and Perez‐Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance?. New phytologist, 157(3), 475-492spa
dc.source.bibliographicCitationMarian, C. O., Krebs, S. L., and Arora, R. (2004). Dehydrin variability among rhododendron species: a 25‐kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytologist, 161(3), 773-780.spa
dc.source.bibliographicCitationWalker, M. D., Walker, D. A., and Auerbach, N. A. (1994). Plant communities of a tussock tundra landscape in the Brooks Range Foothills, Alaska. Journal of Vegetation Science, 5(6), 843-866spa
dc.source.bibliographicCitationGeml, J. (2017). Altitudinal gradients in mycorrhizal symbioses. In Biogeography of mycorrhizal symbiosis (pp. 107-123). Springer, Cham.spa
dc.source.bibliographicCitationAikio, S., and Ruotsalainen, A. (2002). The modelled growth of mycorrhizal and non-mycorrhizal plants under constant versus variable soil nutrient concentration. Mycorrhiza, 12(5), 257-261spa
dc.source.bibliographicCitationCraine, J. M., Elmore, A. J., Aidar, M. P., Bustamante, M., Dawson, T. E., Hobbie, E. A., and Nardoto, G. B. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4), 980-992spa
dc.source.bibliographicCitationZhou, J., Deng, Y., Shen, L., Wen, C., Yan, Q., Ning, D., ... and Voordeckers, J. W. (2016). Temperature mediates continental-scale diversity of microbes in forest soils. Nature communications, 7(1), 1-10spa
dc.source.bibliographicCitationBarron, A. R., Purves, D. W., and Hedin, L. O. (2011). Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia, 165(2), 511-520spa
dc.source.bibliographicCitationMenge, D. N., Levin, S. A., and Hedin, L. O. (2009). Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. The American Naturalist, 174(4), 465-477spa
dc.source.bibliographicCitationXu, H., Detto, M., Li, Y., Li, Y., He, F., and Fang, S. (2019). Do N‐fixing legumes promote neighbouring diversity in the tropics?. Journal of Ecology, 107(1), 229-239.spa
dc.source.bibliographicCitationXu, H., Detto, M., Fang, S., Chazdon, R. L., Li, Y., Hau, B. C., ... and Uriarte, M. (2020). Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications biology, 3(1), 1-8spa
dc.source.bibliographicCitationAyram, C. A. C., Rothlisberger, A. E., Timote, J. J. D., Buritica, S. R., Ramirez, W., and Corzo, G. (2020). Spatiotemporal Evaluation of The Human Footprint in Colombia: Four Decades of Anthropic Impact in Highly Biodiverse Ecosystems. bioRxivspa
dc.source.bibliographicCitationDelavaux, C. S., Weigelt, P., Dawson, W., Duchicela, J., Essl, F., van Kleunen, M., ... and Winter, M. (2019). Mycorrhizal fungi influence global plant biogeography. Nature ecology and evolution, 3(3), 424-429spa
dc.source.bibliographicCitationLehto, T., and Zwiazek, J. J. (2011). Ectomycorrhizas and water relations of trees: a review. Mycorrhiza, 21(2), 71-90spa
dc.source.bibliographicCitationVan Der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., ... & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396(6706), 69-72.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectBiogeografíaspa
dc.subjectMicorrizasspa
dc.subjectAndes colombianosspa
dc.subjectGradiente altitudinalspa
dc.subjectDiversidadspa
dc.subject.ddcBiologíaspa
dc.subject.ddcCiencias botánicasspa
dc.subject.keywordBiogeographyspa
dc.subject.keywordMycorrhizaespa
dc.subject.keywordColombian Andesspa
dc.subject.keywordAltitudinal gradientspa
dc.subject.keywordDiversityspa
dc.titleDiversity of mycorrhizal types along altitudinal gradients in mountain tropical forests of northern South Americaspa
dc.title.TranslatedTitleDiversidad de tipos de micorrizas a lo largo de gradientes altitudinales en bosques tropicales de montaña del norte de Sudaméricaspa
dc.typebachelorThesiseng
dc.type.documentArtículospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Miguel_Angel_Rendon_2020.pdf
Tamaño:
1.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento de tesis