Ítem
Acceso Abierto

Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO

dc.contributor.advisorOndo Méndez, Alejandro Oyono
dc.contributor.advisorRodríguez Burbano, Diana Consuelo
dc.creatorLancheros Vega, María Camila
dc.creator.degreeIngeniero Biomédicospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-06-17T13:35:54Z
dc.date.available2021-06-17T13:35:54Z
dc.date.created2021-05-26
dc.descriptionLos puntos de carbono (PC) son nanoparículas a base de carbono, con diámetros de 10 nm en promedio. Se destacan por sus propiedades fluorescentes, lo que ha permitido plantear su aplicación en el desarrollo de técnicas de bioimagenología y radioterapia. No obstante, pueden utilizarse también en otras aplicaciones como la liberación controlada de fármacos y los biosensores. Dado su alto valor en técnicas de diagnóstico y tratamiento del cáncer, cuando se habla de la toxicidad intrínseca de este material, la literatura se ha preocupado mayormente por determinar su citotoxicidad en células cancerosas. Sin embargo, teniendo en cuenta que los PC podrían acumularse también en órganos sanos o en tejido sano que rodea el tumor, resulta de capital importancia determinar su toxicidad en células sanas. En consecuencia, como objetivo de este proyecto se planteó sintetizar PC y determinar citotoxicidad en las líneas celulares derivadas de tejido sano 3T3-L1 (preadipocitos) y Vero (riñón). Para ello se sintetizaron puntos de carbono a partir de ácido cítrico como precursor y etanol y N, N-Dimetilformamida. La citotoxicidad se determinó con los ensayos de Azul Tripán y MTT. Se establecieron dos controles uno positivo (tóxico) y uno negativo (no tóxico). Las pruebas estadísticas indicaron que los PC no mostraron citotoxicidad detectable en las células tumores a concentraciones entre 50 y 500 μg/mL. Con la realización de este trabajo se establecieron las bases de la citotoxicidad de una nanoplataforma de PC en su primera etapa de desarrollo, cuyo fin último será la aplicación de radioterapia.spa
dc.description.abstractCarbon Dots (CDs) are carbon based nanoparticles with average diameters of 10 nm. They are distinguished for their fluorescent properties, which has allowed their application in the development of techniques for bioimage and radiotherapy. Nevertheless they have other applications such as controlled drug release and biosensors. Given their importance in techniques for treatment and diagnostic, when it comes to their intrinsic toxicity literature has worried more about determining cytotoxicity on cancer cell lines. Taking into account that CDs may accumulate in healthy organs or tissue that surrounds tumors, it is of great importance to determine their cytotoxicity on healthy cell lines. As a consequence, the objective of this project was to determine the cytotoxicity of CDs on the two cell lineages derived from healthy tissue 3T3-L1 (preadipocytes) and Vero (Kidney). For this purpose, carbon dots were synthesized using citric acid as precursor and ethanol and N, N-Dimethylformamide as solvents, cytotoxicity was measured using the Trypan Blue and MTT assays, two controls were stablished a positive control (toxic) and a negative control (non-toxic). The statistical analysis did not show detectable cytotoxicity at concentrations of CDs in the range from 50 to 500 μg/mL. With this thesis work the bases of the cytotoxicity of a nanoplatform of carbon dots in the first stage of development were established, whose final purpose is to create a theranostic platform for radiotherapy.spa
dc.format.extent32 pp.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_31628
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/31628
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentEscuela de Medicina y Ciencias de la Saludspa
dc.publisher.programIngeniería Biomédicaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationJ. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations,” Beilstein J. Nanotechnol, vol. 9, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.spa
dc.source.bibliographicCitationG. Guisbiers, S. Mejía-Rosales, and F. Leonard Deepak, “Nanomaterial properties: Size and shape dependencies,” Journal of Nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/180976.spa
dc.source.bibliographicCitationV. Francia, D. Montizaan, and A. Salvati, “Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 338–353, Feb. 2020, doi: 10.3762/bjnano.11.25.spa
dc.source.bibliographicCitationV. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, pp. 561–573, 2007, doi: 10.4314/tjpr.v5i1.14634.spa
dc.source.bibliographicCitationC. Contini, M. Schneemilch, S. Gaisford, and N. Quirke, “Nanoparticle–membrane interactions,” Journal of Experimental Nanoscience, vol. 13, no. 1, Jan. 2018, doi: 10.1080/17458080.2017.1413253.spa
dc.source.bibliographicCitationJ. Fan, M. Claudel, C. Ronzani, Y. Arezki, L. Lebeau, and F. Pons, “Lessons from a comprehensive study on a nanoparticle library,” International Journal of Pharmaceutics, vol. 569, p. 118521, 2019, doi: 10.1016/j.ijpharm.2019.118521ï.spa
dc.source.bibliographicCitationX. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” Journal of the American Chemical Society, vol. 126, no. 40, Oct. 2004, doi: 10.1021/ja040082h.spa
dc.source.bibliographicCitationY. P. Sun et al., “Quantum-sized carbon dots for bright and colorful photoluminescence,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756–7757, 2006, doi: 10.1021/ja062677d.spa
dc.source.bibliographicCitationM. J. Molaei, “Carbon quantum dots and their biomedical and therapeutic applications: A review,” RSC Advances, vol. 9, no. 12, pp. 6460–6481, 2019, doi: 10.1039/c8ra08088g.spa
dc.source.bibliographicCitationT. v. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, and R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications,” Journal of Materials Chemistry C, vol. 7, no. 24, 2019, doi: 10.1039/C9TC01640F.spa
dc.source.bibliographicCitationS. Zheng et al., “Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling,” Biochemical and Biophysical Research Communications, vol. 511, no. 2, pp. 207–213, 2019, doi: 10.1016/j.bbrc.2019.01.098.spa
dc.source.bibliographicCitationL. Gonzalez, D. Lison, and M. Kirsch-Volders, “Genotoxicity of engineered nanomaterials: A critical review,” Nanotoxicology, vol. 2, no. 4, Jan. 2008, doi: 10.1080/17435390802464986.spa
dc.source.bibliographicCitationL. Hu et al., “Multifunctional carbon dots with high quantum yield for imaging and gene delivery,” Carbon, vol. 67, Feb. 2014, doi: 10.1016/j.carbon.2013.10.023.spa
dc.source.bibliographicCitationV. N. Mehta, S. Jha, and S. K. Kailasa, “One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells,” Materials Science and Engineering: C, vol. 38, May 2014, doi: 10.1016/j.msec.2014.01.038.spa
dc.source.bibliographicCitationX. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, and Y. Dou, “Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging,” 31 Biosensors and Bioelectronics, vol. 60, pp. 292–298, Oct. 2014, doi: 10.1016/j.bios.2014.04.046.spa
dc.source.bibliographicCitationF. Du et al., “Nitrogen-doped carbon dots with heterogeneous multi-layered structures,” RSC Advances, vol. 4, no. 71, pp. 37536–37541, 2014, doi: 10.1039/c4ra06818a.spa
dc.source.bibliographicCitationM. Tuerhong, Y. XU, and X.-B. YIN, “Review on Carbon Dots and Their Applications,” Chinese Journal of Analytical Chemistry, vol. 45, no. 1, Jan. 2017, doi: 10.1016/S1872-2040(16)60990-8.spa
dc.source.bibliographicCitationJ. H. Zhang, A. Niu, J. Li, J. W. Fu, Q. Xu, and D. S. Pei, “In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish,” Scientific Reports, vol. 6, Nov. 2016, doi: 10.1038/srep37860.spa
dc.source.bibliographicCitationF. Du et al., “Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging,” International Journal of Nanomedicine, Nov. 2015, doi: 10.2147/IJN.S82778.spa
dc.source.bibliographicCitationC.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, and P.-T. Chou, “Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release,” Journal of Materials Chemistry, vol. 22, no. 29, 2012, doi: 10.1039/c2jm32206d.spa
dc.source.bibliographicCitationY.-Y. Yao, G. Gedda, W. M. Girma, C.-L. Yen, Y.-C. Ling, and J.-Y. Chang, “Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery,” ACS Applied Materials & Interfaces, vol. 9, no. 16, Apr. 2017, doi: 10.1021/acsami.7b01599.spa
dc.source.bibliographicCitation“Radiación ionizante (Ionizing Radiation) | ToxFAQ | ATSDR.” https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts149.html (accessed Apr. 15, 2021).spa
dc.source.bibliographicCitation“Radiation Therapy for Cancer - National Cancer Institute.” https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy (accessed Apr. 15, 2021).spa
dc.source.bibliographicCitationJ. Ruan et al., “Graphene Quantum Dots for Radiotherapy,” ACS Applied Materials & Interfaces, vol. 10, no. 17, May 2018, doi: 10.1021/acsami.7b18975.spa
dc.source.bibliographicCitationF. Du et al., “Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors,” Biomaterials, vol. 121, Mar. 2017, doi: 10.1016/j.biomaterials.2016.07.008.spa
dc.source.bibliographicCitationB. Demir et al., “Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics,” Journal of Drug Delivery Science and Technology, vol. 62, Apr. 2021, doi: 10.1016/j.jddst.2021.102363.spa
dc.source.bibliographicCitationA. Montoro et al. “Evaluación de la radiosensibilidad del personal sanitario en procedimientos de tratamiento o diagnóstico médico con radiaciones” Dialnet, Nº. 134, 2014, págs. 15-25. ISSN: 1888-5438.spa
dc.source.bibliographicCitationÖ. S. Aslantürk, “In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages,” Genotoxicity - A Predictable Risk to Our Actual World, pp. 1–18, 2018, doi: 10.5772/intechopen.71923.spa
dc.source.bibliographicCitationJ. M. Posimo et al., “Viability assays for cells in culture,” Journal of Visualized Experiments, vol. 2, no. 83, pp. 1–14, 2014, doi: 10.3791/50645.spa
dc.source.bibliographicCitationT. L. Riss et al., Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.spa
dc.source.bibliographicCitationP. Zuo, X. Lu, Z. Sun, Y. Guo, and H. He, “A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots,” 32 Microchimica Acta, vol. 183, no. 2. Springer-Verlag Wien, pp. 519–542, Feb. 01, 2016, doi: 10.1007/s00604-015-1705-3.spa
dc.source.bibliographicCitationS. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” The Journal of Physical Chemistry C, vol. 113, no. 43, Oct. 2009, doi: 10.1021/jp905912n.spa
dc.source.bibliographicCitationY. Yang et al., “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chemical Communications, vol. 48, no. 3, pp. 380–382, 2012, doi: 10.1039/c1cc15678k.spa
dc.source.bibliographicCitationM. L. Bhaisare, A. Talib, M. S. Khan, S. Pandey, and H. F. Wu, “Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging,” Microchimica Acta, vol. 182, no. 13–14, pp. 2173–2181, 2015, doi: 10.1007/s00604-015-1541-5.spa
dc.source.bibliographicCitationJ.-H. Liu et al., “Cytotoxicity of Fluorescent Carbon Nanoparticles,” Nano LIFE, vol. 01, no. 01n02, Mar. 2010, doi: 10.1142/S1793984410000158.spa
dc.source.bibliographicCitationA. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, “Interference of engineered nanoparticles with in vitro toxicity assays,” Archives of Toxicology, vol. 86, no. 7, Jul. 2012, doi: 10.1007/s00204-012-0837-z.spa
dc.source.bibliographicCitationN. A. Monteiro-Riviere and A. O. Inman, “Challenges for assessing carbon nanomaterial toxicity to the skin,” Carbon, vol. 44, no. 6, May 2006, doi: 10.1016/j.carbon.2005.11.004.spa
dc.source.bibliographicCitationS. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents,” Chemical Communications, vol. 48, no. 70, 2012, doi: 10.1039/c2cc33796g.spa
dc.source.bibliographicCitationC. Dias et al., “Biocompatibility and bioimaging potential of fruit-based carbon dots,” Nanomaterials, vol. 9, no. 2, Feb. 2019, doi: 10.3390/nano9020199.spa
dc.source.bibliographicCitationS. Singh, D. Singh, S. P. Singh, and A. K. Pandey, “Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity,” Chemosphere, vol. 214, pp. 130–135, Jan. 2019, doi: 10.1016/j.chemosphere.2018.09.112.spa
dc.source.bibliographicCitationAshmi Mewada and Madhuri Sharon, Carbon Dots As Theranostic Agents, vol. 1. Wiley, 2018.spa
dc.source.bibliographicCitationN. C. Ammerman, M. Beier‐Sexton, and A. F. Azad, “Growth and Maintenance of Vero Cell Lines,” Current Protocols in Microbiology, vol. 11, no. 1, Nov. 2008, doi: 10.1002/9780471729259.mca04es11.spa
dc.source.bibliographicCitationR. Chen, “MTT Assay of Cell Numbers after Drug/Toxin Treatment,” 2011. [Online]. Available: http://www.bio-protocol.org/e51.spa
dc.source.bibliographicCitation“GraphPad Prism.” La Jolla, California, USA, Mar. 15, 2021.spa
dc.source.bibliographicCitationJ. Schneider et al., “Molecular Fluorescence in Citric Acid-Based Carbon Dots,” The Journal of Physical Chemistry C, vol. 121, no. 3, Jan. 2017, doi: 10.1021/acs.jpcc.6b12519.spa
dc.source.bibliographicCitationL. Tang et al., “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano, vol. 6, no. 6, Jun. 2012, doi: 10.1021/nn300760g.spa
dc.source.bibliographicCitationC. Menezes, E. Valerio, and E. Dias, “The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins,” in New Insights into Toxicity and Drug Testing, InTech, 2013.spa
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectCitotoxicidadspa
dc.subjectPuntos de Carbonospa
dc.subjectLíneas celularesspa
dc.subject.ddcIngeniería & operaciones afinesspa
dc.subject.ddcCiencias médicas, Medicinaspa
dc.subject.keywordCytotoxicityspa
dc.subject.keywordCarbon dotsspa
dc.subject.keywordCell lineagesspa
dc.subject.lembIngeniería & operaciones afinesspa
dc.titleEvaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VEROspa
dc.title.TranslatedTitleCytotoxic effects of the carbon dots on the cell lineages 3T3-l1 and VEROspa
dc.typebachelorThesiseng
dc.type.documentTrabajo de gradospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo-DirigidoMCLVfinal.pdf
Tamaño:
845 KB
Formato:
Adobe Portable Document Format
Descripción: