ƍtem
Acceso Abierto

Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama

dc.contributorAdamčƭkovĆ”, KatarĆ­na
dc.contributorHampe, Felix
dc.contributorCaboň, Miroslav
dc.contributorManz, Cathrin
dc.contributorOvrebo, Clark
dc.contributorPipenbring, Meike
dc.contributor.advisorAdamčƭk, Slavomir
dc.creatorVera Castellanos, Michelle
dc.creator.degreeBiĆ³logospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-02-12T19:42:35Z
dc.date.available2020-02-12T19:42:35Z
dc.date.created2020-01-24
dc.descriptionEn el presente estudio se describen Russula floriformis y R. symphoniae como dos nuevas especies hermanas de la subsecciĆ³n Russula Substriatinae del bosque montano presente en Colombia y PanamĆ” asociadas con Ć”rboles Quercus spp. y Oreomunnea spp., respectivamente.Las condiciones ambientales en las dos Ć”reas de estudio son muy similares y una similitud de secuencia ITS superior al 99% con solo 3 posiciones diferentes indican que estas especies estĆ”n estrechamente relacionadas y son casi crĆ­pticas. Observaciones detalladas de estructuras microscĆ³picas y anĆ”lisis de multi-locus revelaron mĆ”s caracteres morfolĆ³gicos y moleculares que distinguen las colecciones de Colombia y PanamĆ”, resultadon en las especies R. floriformis y R. symphoniae. La distribuciĆ³n espacial y la proximidad filogenĆ©tica de las especies de Russula y la distribuciĆ³n de Quercus, sugiere su especiaciĆ³n como resultado de la migraciĆ³n, la adaptaciĆ³n y el aislamiento climĆ”tico a travĆ©s del Istmo de PanamĆ” de la especie durante los eventos del Plioceno y el Pleistoceno. Basado en esto, hipotetizamos que esto podrĆ­a ser evidencia de coevoluciĆ³n entre Russula y Quercus. El anĆ”lisis de los datos de secuencia ITS disponibles pĆŗblicamente sugiere que hay mĆ”s especies adaptadas localmente de este linaje en AmĆ©rica Central y del Norte.spa
dc.description.abstractRussula floriformis and R. symphoniae are described as two new sister species of Russula subsection Substriatinae from montane forest of Colombia and Panama and associated with Quercus and Oreomunnea trees. Very similar field environmental conditions and an ITS sequence similarity higher than 99% with only 3 different positions indicate that these species are closely related and nearly cryptic. Detailed observations of microscopic structures and analyses of more DNA loci revealed more morphological and molecular characters distinguishing collections of R. floriformis from Colombia and R. symphoniae from Panama. Spatial distribution and phylogenetic proximity of Russula species and their ectomycorrhizal host Quercus tree suggests their speciation as a result of migration, adaptation and climatic isolation across the Panama Isthmus of their host tree during the Pliocene and Pleistocene events. Then we hypothesize that this could be evidence of coevolution between Russula and Quercus. Analysis of publicly available ITS sequence data suggests that there are more locally adapted species of this lineage in Central and North America.spa
dc.description.embargo2022-02-13 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2022-02-12
dc.description.sponsorshipInternational Association for Plant Taxonomyspa
dc.description.sponsorshipSlovak Academy of Sciencespa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_20860
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/20860
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y MatemƔticasspa
dc.publisher.programBiologĆ­aspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorizaciĆ³n es original y la realizĆ³ sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autorĆ­a y tiene la titularidad sobre la misma.spa
dc.source.bibliographicCitationAdamčƭk S, JančovičovĆ” S, & Buyck B. 2018. The Russulas Described by Charles Horton Peck. Cryptogamie Mycologie, 39: 3ā€“108.spa
dc.source.bibliographicCitationAdamčƭk S, Looney B, Caboň M, JančovičovĆ” S, AdamčƭkovĆ” K, Avis PG. Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, KƤlvlƤinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo C, Saba M, Taipale T, Verbeken A, Wisitrassameewong K, Buyck B. 2019. The quest for a globally comprehensible Russula language. Fungal Diversity.spa
dc.source.bibliographicCitationAdamčƭk S, SlovĆ”k M, Eberhardt U, Ronikier A, Jairus T, Hampe F, Verbeken A (2016b) Molecular inference, multivariate morphometrics and ecological assessment are applied in concert to delimit species in the Russula clavipes complex. Mycologia 108:716ā€“730. https://doi.org/10.3852/15-194spa
dc.source.bibliographicCitationAndersen KM, Endara MJ, Turner BL, Dalling JW. 2012. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 168:519ā€“531spa
dc.source.bibliographicCitationƁvila-de Navia SL, EstupiƱan-Torres SM. 2013. Calidad sanitaria del agua del Parque Natural Chicaque. NOVA 11:45-51.spa
dc.source.bibliographicCitationBacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli, A. 2015. Biological evidence supports and early and complex emergence of the Isthmus of Panama. Proceeding of the National Academy of Sciences 112: 6110-6115.spa
dc.source.bibliographicCitationBadotti F, Silva de Oliveira F, Garcia CF, Vaz AMB, Fonseca PLC, Nahum LA, Oliveira G, GĆ³es-Neto A. 2017. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiology 17: 42.spa
dc.source.bibliographicCitationBazzicalupo AL, Buyck B, Saar I, Vauras J, Carmean D, Berbee ML. 2017. Troubles with mycorrhizal mushroom identification where morphological differentiation lags behind barcode sequence divergence. Taxon 66(4):791ā€“810.spa
dc.source.bibliographicCitationBecerra G, Zak M. 2011. The Ectomycorrhizal Symbiosis in South America: Morphology, Colonization, and Diversity. In: Baptista P, Tavares RM, Lino-Neto T. 2011. Diversity and Biotechnology of Ectomycorrhizae. Berlin, Germany. p. 157ā€“175.spa
dc.source.bibliographicCitationBecerra A, Zak MR, Horton TR, Micolini J. 2005. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza. 15: 525ā€“531.spa
dc.source.bibliographicCitationBuyck B. 1989. Valeur taxonomique du bleu de crĆ©syl pour le genre Russula. Bull Soc Mycol Fr 105:1ā€“6spa
dc.source.bibliographicCitationBuyck B. 1992. Checklist of tropical Russulae. Russulales News, Special Issue 1: 1-100spa
dc.source.bibliographicCitationBuyck B, Adamčƭk S. 2011. Type Studies in Russula Subgenus Heterophyllidia from the Eastern United States. Cryptogamie, Mycologie, 32: 151ā€“169.spa
dc.source.bibliographicCitationBuyck B, Halling R. 2004. Two new Quercus-associated Russulas from Costa Rica and their relation to some very rare North American species. Cryptogamie, Mycologie, 25: 3ā€“13.spa
dc.source.bibliographicCitationBuyck B, Halling RE, Miller GM. 2003. The inventory of Russula in Costa Rica: discovery of two very rare North American species in montane oak forest. Bolletino del Gruppo Micologico G. Bresadola ā€“ Nuova Serie 46(3): 57ā€“74spa
dc.source.bibliographicCitationBuyck B, Zoller S, Hofstetter V. 2018. Walking the thin lineā€¦ ten years later: the dilemma of above- versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity 89: 267ā€“292.spa
dc.source.bibliographicCitationCaboň M, Eberhardt U, Looney B, Hampe F, KolaÅ™Ć­k M, JančovičovĆ” S, Verbeken A, Adamčƭk S. 2017. New insights in Russula subsect. Rubrinae: phylogeny and the quest for synapomorphic characters. Mycological Progress, 16: 877ā€“892.spa
dc.source.bibliographicCitationCaboň M, Li GJ, Saba M, KolaÅ™Ć­k M, JančovičovĆ” S, Khalid AN, Moreau PA, Wen HA, Pfister DH, Adamčƭk S. 2019. Phylogenetic study documents different speciation mechanisms within the Russula globispora lineage in boreal and arctic environments of the Northern Hemisphere. IMA Fungus 10: 1ā€“16spa
dc.source.bibliographicCitationCavelier J .1996. Fog interception in montane forests across the central cordillera of Panama. J Trop Ecol 12:357ā€“369spa
dc.source.bibliographicCitationCorrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. 2016. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26: 1ā€“17.spa
dc.source.bibliographicCitationCorrales A, Henkel TW, Smith ME. 2018. Ectomycorrhizal associations in the tropics ā€“ biogeography, diversity patterns and ecosystem roles. New Phytologist, 220: 1076ā€“1091.spa
dc.source.bibliographicCitationCorrea A, Galdames C, Stapf MS. 2004. Catalogue of vascular plants of Panama. Universidad de PanamĆ”, Instituto de Investigaciones Tropicalesspa
dc.source.bibliographicCitationDel Olmo-Ruiz M, GarcĆ­a-Sandoval R, AlcĆ”ntara-Ayala O, VĆ©liz M, Luna-Vega I. 2017. Current knowledge of fungi from Neotropical montane cloud forests: distributional patterns and composition. Biodiversity and Conservation 26: 1919ā€“1942.spa
dc.source.bibliographicCitationDiĆ©dhiou AG, Selosse MA, Galiana A, DiabatĆ© M, Dreyfus B, BĆ¢ AM, de Faria SM, BĆ©na, G. 2010. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environmental Microbiology 12: 2219ā€“2232.spa
dc.source.bibliographicCitationFranco-Molano AE, Corrales A, Vasco-Palacios AM. 2010. Macrogundi of Colombia II. Checklist of the species of Agaricales, Boletales, Cantharellales and Russulales (Agaricomycetes, Basidiomycota). Actualidad Biologicas 32: 89-114.spa
dc.source.bibliographicCitationGarcĆ­a-GuzmĆ”n OM, Garibay-Orijel R, HernĆ”ndez E, Arellano-Torres E, & Oyama K. 2017. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza 27: 811ā€“822.spa
dc.source.bibliographicCitationGardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113ā€“118.spa
dc.source.bibliographicCitationGonzƔlez CE, Jarvis A, Palacio JD. 2006. Biogeography of the Colombian oak, Quercus humboldtii Bonpl: geographical distribution and their climatic adaptation. International Centre for Tropical Agriculture (CIAT)/Museo de Historia Natural, Universidad Del Cauca.10p.spa
dc.source.bibliographicCitationHall T. 2005. BioEdit: Biological Sequence Alignment Editor. http://www.mbio.ncsu.edu/bioedit/bioedit.htmlspa
dc.source.bibliographicCitationHaug I, WeiƟ M, Homeier J, Oberwinkler F, Kottke I. 2005. Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytologist, 165: 923ā€“936.spa
dc.source.bibliographicCitationHynes MM, Smith ME, Zasoski RJ, Bledsoe CS. 2010. A molecular survey of ectomycorrhizal hyphae in a California Quercusā€“Pinus woodland. Mycorrhiza 20: 265ā€“274spa
dc.source.bibliographicCitationHerrera F, Manchester SR, Koll R, Jaramillo C. 2014. Fruits of Oreomunnea (Juglandaceae) in the early Miocene of Panama. In: Stevens WD, Montiel OM, Raven PH, Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year, 124ā€“133. St Louis. Missouri Botanical Garden Press.spa
dc.source.bibliographicCitationHooghiemstra H. 2006. Immigration of Oak into Northern South America: A Paleo-Ecological Document. In: Kappelle M. Ecology and Conservation of Neotropical Montane Oak Forests. Berlin, Germany. Springer. p 17ā€“28.spa
dc.source.bibliographicCitationJaramillo C. 2018. Evolution of the Isthmus of Panama: Biological, Paleoceanographic and Paleoclimatological Implications. In: Hoorn C, Perrigo A, Antonelli A, Mountains, Climate and Biodiversity. Hoboken, New Jersey. John Wiley & Sons. P 323-337.spa
dc.source.bibliographicCitationKatoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software, version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772ā€“780spa
dc.source.bibliographicCitationKearse M., Moir R., Wilson A., Stones-Havas S., Cheung M. et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647ā€“1649spa
dc.source.bibliographicCitationLanfear R., Calcott B., Ho S.Y., Guindon S., Lanfear R. et al. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695ā€“1701spa
dc.source.bibliographicCitationLooney BP, Meidl P, Piatek MJ, Miettinen O, Martin FM, Matheny PB, LabbĆ© JL. 2018. Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytologist 218: 54ā€“66.spa
dc.source.bibliographicCitationLooney BP, Ryberg M, Hampe F, SĆ”nchez-GarcĆ­a M, Matheny PB. 2016. Into and out of the tropics: Global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology 25: 630ā€“647.spa
dc.source.bibliographicCitationManz C. 2019. Diversity assessment of the ectomycorrhizal genus Russula in tropical montane forests in Masterarbeit.spa
dc.source.bibliographicCitationMatheny PB .2005 Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1ā€“20. doi:10.1016/j.ympev.2004.11.014spa
dc.source.bibliographicCitationMiller M.A., Pfeiffer W., Schwartz T. 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 - 8.spa
dc.source.bibliographicCitationMoncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationship of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49(2): 278ā€“305. https://doi.org/10.1093/sysbio/49.2.278spa
dc.source.bibliographicCitationMorehouse EA, James TY, Ganley ARD, Vilgalys R, Berger L, Murphy PJ, Longcore E. 2003 ā€“ Multilocus sequences typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology 12:395ā€“403spa
dc.source.bibliographicCitationNilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kƶljalg U. 2006. Taxonomic reliability of DNA sequences in public sequences databases: A fungal perspective. PLoS ONE 1: e59spa
dc.source.bibliographicCitationNixon KC. 2006. Global and Neotropical Distribution and Diversity of Oak (genus Quercus) and Oak Forests. In: Ecology and Conservation of Neotropical Montane Oak Forests. Berlin, Germany. Springer. p. 3ā€“13.spa
dc.source.bibliographicCitationOndruÅ”kovĆ” E, JĆ”noÅ”Ć­kovĆ” Z, KĆ”dasi-HorĆ”kovĆ” M, Koltay A, OstrovskĆ½ R, PažitnĆ½ J, AdamčƭkovĆ” K. 2017 ā€“ Distribution and characterization of Dothistroma needle blight pathogens on Pinus mugo in Slovakia. European Journal of Plant Pathology 148(2):283ā€“294. https://link.springer.com/article/10.1007/s10658-016-1088-2spa
dc.source.bibliographicCitationPastirÄĆ”kovĆ” K, AdamčƭkovĆ” K, PastirÄĆ”k M, Zach P, Galko J, KovĆ”Ä M, Laco J. 2018 ā€“ Two blue-stain fungi colonizing Scots pine (Pinus sylvestris) trees infested by bark beetles in Slovakia, Central Europe. Biologia 73(11):1053ā€“1066.spa
dc.source.bibliographicCitationRambaut A., Suchard M.A., Xie D., Drummond A.J. 2013. Tracer. Version 1.6. http://beast.bio.ed.ac.uk/software/tracer/spa
dc.source.bibliographicCitationRangel JO, Avella A. 2011. Oak forests of Quercus humboldtii in the Caribbean region and distribution patterns related with environmental factor in Colombia. Plant Biosystems 145: 186-198.spa
dc.source.bibliographicCitationRichard F, Millot S, Gardes M, Selosse M-A. 2005. Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytologist 166: 1011ā€“1023.spa
dc.source.bibliographicCitationRivera-Ospina D, CoĢrdoba-GarciĢa C. 1998. GuiĢa ecoloĢgica Parque Natural Chicaque. BogotaĢ, Colombia, JardiĢn BotaĢnico de BogotaĢ JoseĢ Celestino Mutis.spa
dc.source.bibliographicCitationRodrƭguez-Correa F, Oyama K, MacGregor-Fors I, GonzƔlez-Rodrƭguez A. 2015. How are oaks distributed in the Neotropics? A perspective from species turnover, areas of endemism and climatic niches. International Journal of Plant Sciences 176: 222-231.spa
dc.source.bibliographicCitationRomagnesi H (1967) Les Russules Dā€™Europe et Dā€™Afrique du Nord. Bordas, Paris Ronquist F., Teslenko M., van der Mark P., Avres D.L., Darling A. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice, across a large model space. Systematic Biology 61:539ā€“542spa
dc.source.bibliographicCitationRoy M, Schimann H, Braga-Neto R, Da Silva RAE, Duque J, Frame D, Frame D, Wartchow F, Neves MA. 2016. Diversity and Distribution of Ectomycorrhizal Fungi from Amazonian Lowland White-sand Forests in Brazil and French Guiana. Biotropica 48: 90ā€“100.spa
dc.source.bibliographicCitationRoy M, Vasco-Palacios A, Geml J, Buyck B, Delgat L, Giachini A, Grebenc T, Harrower, E, Kuhar F, Magnano A, Rinaldi A, Shimann H, Selosse MA, Sulzbacher MA, Warthchow F, Neves, M. A. 2017. The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in FlorianĆ³polis. New Phytologist 214: 920ā€“923.spa
dc.source.bibliographicCitationSilvestro D., Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organismal Diversity and Evolution 12:335ā€“337spa
dc.source.bibliographicCitationSmith ME, Henkel TW, Aime CM, Fremier AK, Vilgalys R. 2011. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytologist 192: 699ā€“712.spa
dc.source.bibliographicCitationStamatakis A. 2008. The RAxML 7.0.4 manual. https://web.natur.cuni.cz/~vlada/moltax/RAxML-Manual.7.0.4.pdfspa
dc.source.bibliographicCitationVasco-Palacios AM, Franco-Molano AE. 2013. Diversity of Colombian macrofungi (Ascomycota-Basidiomycota). Mycotaxon. 121:499spa
dc.source.bibliographicCitationWang J, Buyck B, Wang XH, Bau T. 2019. Visiting Russula (Russulaceae, Russulales) with samples from southwestern China finds one new subsection of R. subg. Heterophyllidia with two new species. Mycological Progress 18: 771ā€“784.spa
dc.source.bibliographicCitationWang Q, He XH, Guo L-D. 2012. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. Mycorrhiza 22: 461ā€“470spa
dc.source.bibliographicCitationWhite TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315ā€“322spa
dc.source.bibliographicCitationWu Q, Mueller GM, Ovrebo CL. 1997. An index to Genera, Species and Infraspecific Taxa of Basidiomycete Fungi described by Rolf Singer. In: Mueller GM, Wu Q (eds) Mycological contributions of Rolf Singer: Field Itinerary, Index to New Taxa, and List of Publications. Fieldiana, Field Museam of Natural History, Chicago, Illinois, pp 90-93spa
dc.source.bibliographicCitationYe J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134.spa
dc.source.bibliographicCitationQuercus L. in GBIF Secretariat (2019). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.orgspa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectAmericaspa
dc.subjectBosque montano tropicalspa
dc.subjectCoevoluciĆ³nspa
dc.subjectDiversidadspa
dc.subjectEctomicorrizaspa
dc.subjectEspecies cripticasspa
dc.subjectFagaceaespa
dc.subjectJuglandaceaespa
dc.subject.ddcBotƔnicaspa
dc.subject.keywordCryptic speciesspa
dc.subject.keywordCoevolutionspa
dc.subject.keywordDiversityspa
dc.subject.keywordEctomycorrhizaspa
dc.subject.keywordTropical mountain forestspa
dc.subject.keywordAmericaspa
dc.subject.keywordFagaceaespa
dc.subject.keywordJuglandaceaespa
dc.subject.lembMicologĆ­aspa
dc.subject.lembGenƩtica de hongosspa
dc.subject.lembFisiologĆ­a de los hongosspa
dc.subject.lembRussula-VariaciĆ³n (BiologĆ­a)spa
dc.titleTwo new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panamaspa
dc.title.TranslatedTitleDos nuevas especies tropicales de Russula asociadas con Quercus muestran evidencia de diversificaciĆ³n en el Istmo de PanamĆ”spa
dc.typebachelorThesiseng
dc.type.documentTrabajo de gradospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 3 de 3
Cargando...
Miniatura
Nombre:
Supplementary material_1.pdf
TamaƱo:
35.37 KB
Formato:
Adobe Portable Document Format
DescripciĆ³n:
Material Suplementario 1
Cargando...
Miniatura
Nombre:
Supplementary material_2.pdf
TamaƱo:
125.43 KB
Formato:
Adobe Portable Document Format
DescripciĆ³n:
Material suplementario 2
Cargando...
Miniatura
Nombre:
Documento Tesis.pdf
TamaƱo:
2.45 MB
Formato:
Adobe Portable Document Format
DescripciĆ³n:
Articulo principal