Ítem
Acceso Abierto

Exploring the abdominal microbiome of two Heliconius species in the Central Colombian Andes

dc.contributorBrown, Anya
dc.contributor.advisorSanchez-Herrera, Melissa
dc.contributor.advisorKhazan, Emily
dc.creatorSalazar-Sastoque, Maria Paula
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-06-16T20:04:59Z
dc.date.available2021-06-16T20:04:59Z
dc.date.created2021-05-28
dc.descriptionLas comunidades microbianas del intestino tienen funciones importantes en la reproducción, digestión y protección contra patógenos de los insectos hospedadores. Dada la importancia de estas comunidades endosimbióticas para su anfitrión, la investigación sobre la diversidad y ecología de los microbiomas está recibiendo cada vez más atención. Quería probar la importancia de las especies hospedadoras y la geografía en la configuración de la composición del microbioma. Utilizando la región V4 del gen 16S, comparé las comunidades de microbiomas de dos especies de mariposas en dos ubicaciones geográficas. Usé 14 individuos de dos especies, Heliconius cydno y Heliconius clysonymus, capturadas en reservas forestales en Manizales, Caldas y Filandia, Quindío, en la Cordillera Central de los Andes colombianos. Los índices de diversidad alfa, incluidos Shannon e Inverse Simpson, demostraron similaridades en la diversidad taxonómica entre especies y sitios, pero con cambios en la abundancia entre las especies de mariposas. El análisis de coordenadas principales (PCoA) de las comunidades microbianas de individuos mostró que la variabilidad en los microbiomas se desacoplaba de la identidad y el sitio de las especies. Proteobacteria fue el filo más abundante en todas las muestras y Commensalibacter fue el género bacteriano más común. Además, encontramos la presencia de simbiontes intracelulares Spiroplasma y Wolbachia en nuestras muestras.spa
dc.description.abstractGut microbial communities have important roles in reproduction, digestion, and pathogen protection of their insect hosts. Given the importance of these endosymbiotic communities to their host, research on the diversity and ecology of microbiomes is receiving increasing attention. I wanted to test the relative importance of host species and geography in shaping microbiome composition. Using the V4 region of the 16S gene, we compared microbiome communities of two species of butterflies across two geographic locations. I used 14 individuals from two species, Heliconius cydno and Heliconius clysonymus, from forest reserves in Manizales, Caldas and Filandia, Quindío, in the Central Range of the Colombian Andes. Alpha diversity indices, including Shannon and Inverse Simpson, demonstrated similar amounts of taxonomic diversity across species and sites but with changes in abundance between butterfly species. Principal Coordinate Analysis (PCoA) of the microbial communities of individuals showed that the variability in microbiomes was decoupled from species identity and site. Proteobacteria was the most abundant phylum across all samples and Commensalibacter was the most common bacterial genus. In addition, we found the presence of intracellular symbiont Spiroplasma and Wolbachia in our samples.spa
dc.format.extent41 pp.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_31623
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/31623
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.source.bibliographicCitationBaxter, S. W., Papa, R., Chamberlain, N., Humphray, S. J., Joron, M., Morrison, C., ffrench-Constant, R. H., McMillan, W. O., & Jiggins, C. D. (2008). Convergent Evolution in the Genetic Basis of Müllerian Mimicry in Heliconius Butterflies. Genetics, 180(3), 1567-1577. https://doi.org/10.1534/genetics.107.082982spa
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic Butterfly Reveals the Missing Link in Ecological Speciation. Science, 326(5954), 847-850. https://doi.org/10.1126/science.1179141spa
dc.source.bibliographicCitationChandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A., & Kopp, A. (2011). Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System. PLOS Genetics, 7(9), e1002272. https://doi.org/10.1371/journal.pgen.1002272spa
dc.source.bibliographicCitationCrawford, J. E., Clarke, D. W., Criswell, V., Desnoyer, M., Cornel, D., Deegan, B., Gong, K., Hopkins, K. C., Howell, P., Hyde, J. S., Livni, J., Behling, C., Benza, R., Chen, W., Dobson, K. L., Eldershaw, C., Greeley, D., Han, Y., Hughes, B., … White, B. J. (2020). Efficient production of male Wolbachia -infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nature Biotechnology, 38(4), 482-492. https://doi.org/10.1038/s41587-020-0471-xspa
dc.source.bibliographicCitationFerguson, L. V., Dhakal, P., Lebenzon, J. E., Heinrichs, D. E., Bucking, C., & Sinclair, B. J. (2018). Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Functional Ecology, 32(10), 2357-2368. https://doi.org/10.1111/1365-2435.13153spa
dc.source.bibliographicCitationFredensborg, B. L., Kálvalíð, I. F. í, Johannesen, T. B., Stensvold, C. R., Nielsen, H. V., & Kapel, C. M. O. (2020). Parasites modulate the gut-microbiome in insects: A proof-of-concept study. PLOS ONE, 15(1), e0227561. https://doi.org/10.1371/journal.pone.0227561spa
dc.source.bibliographicCitationGilbert, L. E. (1972). Pollen Feeding and Reproductive Biology of Heliconius Butterflies. Proceedings of the National Academy of Sciences, 69(6), 1403-1407. https://doi.org/10.1073/pnas.69.6.1403spa
dc.source.bibliographicCitationHammer, T. J., Dickerson, J. C., McMillan, W. O., & Fierer, N. (2020). Heliconius Butterflies Host Characteristic and Phylogenetically Structured Adult-Stage Microbiomes. Applied and Environmental Microbiology, 86(24), e02007-20, /aem/86/24/AEM.02007-20.atom. https://doi.org/10.1128/AEM.02007-20spa
dc.source.bibliographicCitationHammer, T. J., McMillan, W. O., & Fierer, N. (2014). Metamorphosis of a Butterfly-Associated Bacterial Community. PLOS ONE, 9(1), e86995. https://doi.org/10.1371/journal.pone.0086995spa
dc.source.bibliographicCitationHansen, A. K., & Moran, N. A. (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 23(6), 1473-1496. https://doi.org/10.1111/mec.12421spa
dc.source.bibliographicCitationHuff, R., Pereira, R. I., Pissetti, C., Araújo, A. M. de, d’Azevedo, P. A., Frazzon, J., & GuedesFrazzon, A. P. (2020). Antimicrobial resistance and genetic relationships of enterococci from siblings and non-siblings Heliconius erato phyllis caterpillars. PeerJ, 8, e8647. https://doi.org/10.7717/peerj.8647spa
dc.source.bibliographicCitationJari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R.B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs and Helene Wagner (2019). vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=veganspa
dc.source.bibliographicCitationJiggins, F. M., Hurst, G. D. D., Jiggins, C. D., Schulenburg, J. H. G. v d, & Majerus, M. E. N. (2000). The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology, 120(5), 439-446. https://doi.org/10.1017/S0031182099005867spa
dc.source.bibliographicCitationJoron, M., Jiggins, C. D., Papanicolaou, A., & McMillan, W. O. (2006). Heliconius wing patterns: An evo-devo model for understanding phenotypic diversity. Heredity, 97(3), 157-167. https://doi.org/10.1038/sj.hdy.6800873spa
dc.source.bibliographicCitationKapan, D. D. (1998). Divergent natural selection and müllerian mimicry in polymorphic Heliconius cydno (Lepidoptera: Nymphalidae). https://doi.org/10.14288/1.0088808spa
dc.source.bibliographicCitationKim, B.-R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K.-H., Lee, J.-H., & Isaacson, H. B. K. and R. E. (2017). Deciphering Diversity Indices for a Better Understanding of Microbial Communities. 27(12), 2089-2093.spa
dc.source.bibliographicCitationKim, J. Y., Lee, J., Shin, N.-R., Yun, J.-H., Whon, T. W., Kim, M.-S., Jung, M.-J., Roh, S. W., Hyun, D.-W., & Bae, J.-W. (2013). Orbus sasakiae sp. Nov., a bacterium isolated from the gut of the butterfly Sasakia charonda, and emended description of the genus Orbus. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_5), 1766-1770. https://doi.org/10.1099/ijs.0.041871-0spa
dc.source.bibliographicCitationKim, M., Cha, I.-T., Lee, K.-E., Lee, E.-Y., & Park, S.-J. (2020). Genomics Reveals the Metabolic Potential and Functions in the Redistribution of Dissolved Organic Matter in Marine Environments of the Genus Thalassotalea. Microorganisms, 8(9), 1412. https://doi.org/10.3390/microorganisms8091412spa
dc.source.bibliographicCitationKrishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome – An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4, S16-S21. https://doi.org/10.12980/APJTB.4.2014C95spa
dc.source.bibliographicCitationKronforst, M. R., & Papa, R. (2015). The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry. Genetics, 200(1), 1-19. https://doi.org/10.1534/genetics.114.172387spa
dc.source.bibliographicCitationLeo Lahti, Sudarshan Shetty et al. (2017). Tools for microbiome analysis in R. Version 1.10.0. URL: http://microbiome.github.com/microbiomespa
dc.source.bibliographicCitationLuna. (2021). Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia. https://repository.urosario.edu.co/handle/10336/30921?show=fullspa
dc.source.bibliographicCitationMajumder, R., Sutcliffe, B., Taylor, P. W., & Chapman, T. A. (2019). Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Scientific Reports, 9(1), 14292. https://doi.org/10.1038/s41598-019-50602-5spa
dc.source.bibliographicCitationMcMurdie and Holmes (2013) phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 8(4): e61217.spa
dc.source.bibliographicCitationMeyer, J. L., Castellanos-Gell, J., Aeby, G. S., Häse, C. C., Ushijima, B., & Paul, V. J. (2019). Microbial Community Shifts Associated With the Ongoing Stony Coral Tissue Loss Disease Outbreak on the Florida Reef Tract. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02244spa
dc.source.bibliographicCitationMinard, G., Tikhonov, G., Ovaskainen, O., & Saastamoinen, M. (2019). The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environmental Microbiology, 21(11), 4253-4269. https://doi.org/10.1111/1462-2920.14786spa
dc.source.bibliographicCitationMorris, J., Navarro, N., Rastas, P., Rawlins, L. D., Sammy, J., Mallet, J., & Dasmahapatra, K. K. (2019). The genetic architecture of adaptation: Convergence and pleiotropy in Heliconius wing pattern evolution. Heredity, 123(2), 138-152. https://doi.org/10.1038/s41437-018-0180-0spa
dc.source.bibliographicCitationSalunkhe, R. C., Narkhede, K. P., & Shouche, Y. S. (2014). Distribution and Evolutionary Impact of Wolbachia on Butterfly Hosts. Indian Journal of Microbiology, 54(3), 249-254. https://doi.org/10.1007/s12088-014-0448-xspa
dc.source.bibliographicCitationSantos-Garcia, D., Mestre-Rincon, N., Zchori-Fein, E., & Morin, S. (2020). Inside out: Microbiota dynamics during host-plant adaptation of whiteflies. The ISME Journal, 14(3), 847-856. https://doi.org/10.1038/s41396-019-0576-8spa
dc.source.bibliographicCitationSiozios, S., Moran, J., Chege, M., Hurst, G. D. D., & Paredes, J. C. (2019). Complete Reference Genome Assembly for Commensalibacter sp. Strain AMU001, an Acetic Acid Bacterium Isolated from the Gut of Honey Bees. Microbiology Resource Announcements, 8(1), e01459-18, e01459-18. https://doi.org/10.1128/MRA.01459-18spa
dc.source.bibliographicCitationTandon, K., Lu, C.-Y., Chiang, P.-W., Wada, N., Yang, S.-H., Chan, Y.-F., Chen, P.-Y., Chang, H.-Y., Chiou, Y.-J., Chou, M.-S., Chen, W.-M., & Tang, S.-L. (2020). Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). The ISME Journal, 14(5), 1290-1303. https://doi.org/10.1038/s41396-020-0610-xspa
dc.source.bibliographicCitationTurner, J. R. G. (1968). Some new Heliconius pupae: Their taxonomic and evolutionary significance in relation to mimicry (Lepidoptera, Nymphalidae) *. Journal of Zoology, 155(3), 311-325. https://doi.org/10.1111/j.1469-7998.1968.tb03055.xspa
dc.source.bibliographicCitationvan Schooten, B., Godoy-Vitorino, F., McMillan, W. O., & Papa, R. (2018). Conserved microbiota among young Heliconius butterfly species. PeerJ, 6, e5502. https://doi.org/10.7717/peerj.5502spa
dc.source.bibliographicCitationWalters, W., Hyde, E. R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert, J. A., Jansson, J. K., Caporaso, J. G., Fuhrman, J. A., Apprill, A., & Knight, R. (2016). Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. MSystems, 1(1), sys0029, e00009-15. https://doi.org/10.1128/mSystems.00009-15spa
dc.source.bibliographicCitationXie, J., Vilchez, I., & Mateos, M. (2010). Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma. PLOS ONE, 5(8), e12149. https://doi.org/10.1371/journal.pone.0012149spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectCommensalibacterspa
dc.subjectMariposas del género Heliconiusspa
dc.subjectMicrobiomaspa
dc.subjectWolbachia y Spiroplasmaspa
dc.subject.ddcInvertebradosspa
dc.subject.keywordHeliconius butterfliesspa
dc.subject.keywordMicrobiomespa
dc.subject.keywordCommensalibacterspa
dc.subject.keywordWolbachia and Spiroplasmaspa
dc.titleExploring the abdominal microbiome of two Heliconius species in the Central Colombian Andesspa
dc.title.TranslatedTitleExplorando el microbioma abdominal de dos especies de Heliconius en la cordillera central de Colombiaspa
dc.typebachelorThesiseng
dc.type.documentTrabajo de gradospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
SalazarSastoque-MariaPaula-2021.pdf
Tamaño:
1.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal