Ítem
Acceso Abierto

Sistema de predicción de demanda utilizando técnicas de inteligencia artificial, enfocado en la línea de ritmo cardiaco en Medtronic Latinoamérica
dc.contributor.advisor | Calvo López, John Pablo | |
dc.creator | Cortés García, Julián David | |
dc.creator | García Cuenca, María Claudia | |
dc.creator.degree | Magíster en Business Analytics | |
dc.creator.degreetype | Part time | |
dc.date.accessioned | 2023-07-06T20:25:12Z | |
dc.date.available | 2023-07-06T20:25:12Z | |
dc.date.created | 2023-06-17 | |
dc.date.embargoEnd | info:eu-repo/date/embargoEnd/2023-09-06 | |
dc.description | Actualmente la línea de ritmo cardiaco de Medtronic Latino-America, se ha visto notablemente impactada por el desabastecimiento de componentes clave y la falta de mano de obra, para la manufactura de dispositivos médicos como lo son marcapasos y desfibriladores médicos implantables. Para el año 2022 se ha visto una disminución de la disponibilidad del producto en aproximadamente en un 15%, lo que ha afectado notablemente a las ventas y las relaciones con cada uno de los clientes de la compañía. Teniendo en cuenta el problema planteado, el presente proyecto empresarial tiene como fin desarrollar un sistema de predicción de demanda, donde se evaluó el desempeño de dos técnicas de inteligencia artificial (Holt Winters y ARIMA), teniendo como base el comportamiento de la demanda en los últimos 4 años y aplicando la metodología CRISP-DM para su desarrollo. Al comparar las dos técnicas utilizadas, se logra identificar que la ARIMA presentó una mayor eficiencia con respecto a la técnica Holt Winters, por lo cual se recomienda aplicar la misma al momento de predecir la demanda de dispositivos. | |
dc.description.abstract | Currently, Medtronic Latin America's Cardiac Rhythm Product line has been significantly impacted by a shortage of key components and a lack of workforce for the manufacturing of medical devices such as pacemakers and implantable medical defibrillators. In 2022, there has been a decrease in product availability of approximately 15%, which has significantly affected sales and relationships with each of the company's customers. Considering the problem at hand, the aim of this business project is to develop a demand prediction system. The performance of two artificial intelligence techniques, Holt Winters and ARIMA, was evaluated based on the demand behavior over the past 4 years, using the CRISP-DM methodology for development. When comparing the two techniques used, it is identified that ARIMA demonstrated higher efficiency compared to the Holt Winters technique. Therefore, it is recommended to apply ARIMA when predicting device demand. | |
dc.description.sponsorship | Medtronic. Co | |
dc.format.extent | 46 pp | |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | https://doi.org/10.48713/10336_40072 | |
dc.identifier.uri | https://repository.urosario.edu.co/handle/10336/40072 | |
dc.language.iso | spa | |
dc.publisher | Universidad del Rosario | |
dc.publisher.department | Escuela de Administración | |
dc.publisher.department | Escuela de Ingeniería, Ciencia y Tecnología | |
dc.publisher.program | Maestría en Business Analytics | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.accesRights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.acceso | Restringido (Temporalmente bloqueado) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source.bibliographicCitation | Ayala Castrejón, R. F., & Bucio Pacheco, C. (2020). Modelo ARIMA aplicado al tipo de cambio peso-dólar en el periodo 2016-2017 mediante ventanas temporales deslizantes. Mexican Journal of Economics & Finance / Revista Mexicana de Economia y Finanzas, 15(3), 331–354. http://ez.urosario.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=eoh&AN=EP144434364&lang=es&site=eds-live&scope=site | |
dc.source.bibliographicCitation | Banerjee, P. (2020). ARIMA Model for Time Series Forecasting. Kaggle. https://www.kaggle.com/code/prashant111/arima-model-for-time-series-forecasting | |
dc.source.bibliographicCitation | Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting. Springer International Publishing. https://doi.org/10.1007/978-3-319-29854-2 | |
dc.source.bibliographicCitation | De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing. Journal of the American Statistical Association, 106(496), 1513–1527. https://doi.org/10.1198/jasa.2011.tm09771 | |
dc.source.bibliographicCitation | Dyatkin, B., & Meng, Y. S. (2020). COVID-19 disrupts battery materials and manufacture supply chains, but outlook remains strong. MRS Bulletin, 45(9), 700–702. https://doi.org/10.1557/mrs.2020.239 | |
dc.source.bibliographicCitation | Ersöz, N. Ş., Güner, P., Akbaş, A., & Baki̇R-Gungor, B. (2022). Comparative Performance Analysis of ARIMA, Prophet and Holt-Winters Forecasting Methods on European COVID-19 Data. International Journal of 3D Printing Technologies and Digital Industry. https://doi.org/10.46519/ij3dptdi.1120718 | |
dc.source.bibliographicCitation | Gilley, S., Franks, L., Gayhardt, L., & Salgado, S. (2023). Azure Machine Learning architecture—Azure Architecture Center. Azure. https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-machine-learning-solution-architecture | |
dc.source.bibliographicCitation | Haffner, O., Kučera, E., & Moravčík, M. (2020). Sales Prediction of Svijany Slovakia, Ltd. Using Microsoft Azure Machine Learning and ARIMA. 2020 Cybernetics & Informatics (K&I), 1–9. https://doi.org/10.1109/KI48306.2020.9039875 | |
dc.source.bibliographicCitation | Hyndman, R., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2a ed.). https://otexts.com/fpp2/ | |
dc.source.bibliographicCitation | Makridakis, S., Wheelwright, S., & Hyndman, R. J. (1997). Forecasting: Methods and Applications. John Wiley & Sons. https://research.monash.edu/en/publications/forecasting-methods-and-applications-3rd-ed | |
dc.source.bibliographicCitation | Medtronic. (2021). Misión. Nuestra Misión. https://latinoamerica.medtronic.com/xl-es/our-company/mission.html | |
dc.source.bibliographicCitation | Medtronic. (2023). The Medtronic story: Leading healthcare technology innovation since 1949. https://www.medtronic.com/us-en/our-company/history.html | |
dc.source.bibliographicCitation | Microsoft Inc. (2023). Azure Machine Learning—ML as a Service | Microsoft Azure. https://azure.microsoft.com/en-us/products/machine-learning | |
dc.source.bibliographicCitation | Modgil, S., Gupta, S., Stekelorum, R., & Laguir, I. (2021). AI technologies and their impact on supply chain resilience during COVID-19. International Journal of Physical Distribution & Logistics Management, 52(2), 130–149. https://doi.org/10.1108/IJPDLM-12-2020-0434 | |
dc.source.bibliographicCitation | Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series analysis and forecasting. Wiley-Interscience. | |
dc.source.bibliographicCitation | Oracle. (2022, mayo 25). Cx_Oracle’s documentation. https://cx-oracle.readthedocs.io/en/latest/ Panwar, R., Pinkse, J., & De Marchi, V. (2022). The Future of Global Supply Chains in a Post-COVID-19 World. California Management Review, 64(2), 5–23. https://doi.org/10.1177/00081256211073355 | |
dc.source.bibliographicCitation | Rodriguez, M., Cisneros, H., Arcos-Aviles, D., & Martinez, W. (2022). Forecast of photovoltaic generation in isolated rural areas of Ecuador using Holt-Winters and seasonal variation methods. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Industrial Electronics Society, IECON 2022 – 48th Annual Conference of the IEEE, 1–6. https://doi.org/10.1109/IECON49645.2022.9968817 | |
dc.source.bibliographicCitation | Tachu, E. (2022). A quantitative study of the relationship between cloud flexibility and on-premise flexibility. Issues In Information Systems, 23. https://doi.org/10.48009/1_iis_2022_117 | |
dc.source.bibliographicCitation | Timperley, J., Leeson, P., Mitchell, A. R., & Betts, T. (2019). Pacemakers and ICDs. Oxford University Press. | |
dc.source.bibliographicCitation | Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S., Kissela, B. M., … Martin, S. S. (2022). Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation, 145(8), e153–e639. https://doi.org/10.1161/CIR.0000000000001052 | |
dc.source.bibliographicCitation | World Health Oranization. (2021, junio 11). Cardiovascular diseases. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) | |
dc.source.instname | instname:Universidad del Rosario | |
dc.source.reponame | reponame:Repositorio Institucional EdocUR | |
dc.subject | Ritmo cardiaco | |
dc.subject | Modelo predictivo | |
dc.subject | Inteligencia artificial | |
dc.subject | Holt Winters | |
dc.subject | ARIMA | |
dc.subject | CRISP-DM | |
dc.subject | Medtronic | |
dc.subject.keyword | Cardiac Rhythm | |
dc.subject.keyword | Predictive model | |
dc.subject.keyword | Forecast | |
dc.subject.keyword | Artificial intelligence | |
dc.subject.keyword | Holt Winters | |
dc.subject.keyword | ARIMA | |
dc.subject.keyword | CRISP-DM | |
dc.subject.keyword | Medtronic | |
dc.title | Sistema de predicción de demanda utilizando técnicas de inteligencia artificial, enfocado en la línea de ritmo cardiaco en Medtronic Latinoamérica | |
dc.type | bachelorThesis | |
dc.type.document | Trabajo de grado | |
dc.type.spa | Trabajo de grado | |
local.department.report | Escuela de Administración | |
local.department.report | Escuela de Ciencias e Ingeniería |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Sistema-de-prediccion-de-demanda-utilizando-CortesGarcia-JulianDavid-2023.pdf
- Tamaño:
- 1.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción: