Ítem
Acceso Abierto

Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera

dc.contributorHerrera Gutiérrez, Laura Maria
dc.contributorOrjuela, Rafael
dc.contributor.advisorRiveros Rivera, Andre Josafat
dc.creatorBarragán Barrera, Heidy Natalia
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-08-20T21:39:02Z
dc.date.available2020-08-20T21:39:02Z
dc.date.created2020-08-12
dc.descriptionLas variaciones en el tamaño corporal representan un motor para la colonización de nuevos nichos representado en patrones ecogeográficos. La ley de Bergmann describe un patrón ecogeográfico donde las especies con mayor tamaño corporal se distribuyen a mayor latitud. No obstante, la ley de Bergmann sensu lato incluye factores abióticos como temperatura y altitud. En consecuencia, la ley de Bergmann sensu lato extiende el patrón modificado a distintos grupos que antes no se habían incluido, como en el caso de la Clase Insecta. Se sabe que las variaciones en el tamaño corporal de los insectos influyen en las dinámicas de forrajeo. Por lo tanto, la información ambiental que perciben y procesan los insectos varía con cambios en el tamaño corporal absoluto y relativo. En este estudio se evaluó la ley de Bergmann sensu lato aplicada en A. mellifera con respecto a una clina altitudinal en dos zonas de la cordillera oriental colombiana; evaluando variaciones de rasgos morfométricos y sensoriales, además de su relación con la percepción de la información olfativa y sus consecuencias en las actividades de forrajeo. Se encontró que las abejas de menor elevación presentaron menor magnitud para rasgos sensoriales y morfométricos a diferencia de las abejas que se distribuyen en la localidad con mayor elevación. Este patrón responde al principio de la ley de Bergmann sensu lato en función de una clina altitudinal. Las variaciones alométricas a nivel morfométrico registradas en el estudio tienen efecto en los rasgos sensoriales de A. mellifera. En consecuencia, se puede sugerir como la temperatura asociada a la altitud moldea las comunidades de A. mellifera, específicamente en tareas de polinización.spa
dc.description.abstractVariations in body size represent an important driver in colonization of new niches, indicated by ecogeographic patterns. Bergmann's Law describes an ecogeographic pattern where species with larger body size are distributed at higher latitudes. However, Bergmann's law sensu lato includes abiotic factors such as temperature and altitude to complement the explanation of this pattern. Consequently, Bergmann's law sensu lato extends the modified pattern within groups that had not previously been included before, specifically, the Class Insecta. Variations in insect body size are known to influence foraging dynamics. Therefore, the environmental information that insects perceive and process varies with changes in absolute and relative body size. In this study, the Bergmann sensu lato law applied in A. mellifera was evaluated within an altitudinal cline in two areas of the Colombian eastern mountain range. We include the variations in morphometric and sensory traits, and their relationship with the perception of olfactory information and its consequences on foraging activities. We found that bees of lower elevation exhibited lower magnitude for sensory and morphometric traits, unlike bees that are distributed in the locality with higher elevation. This pattern follows the principle of Bergmann sensu lato based on an altitudinal cline. The allometric variations at the morphometric level evaluated in the study have an effect on the sensory features of A. mellifera. Consequently, we suggested how the temperature associated with the altitude shapes the A. mellifera communities, specifically in pollination tasks.spa
dc.description.sponsorshipDirección de Investigación e Innovación de la Universidad del Rosario (Beca de fondos concursables para semilleros)spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_28206
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/28206
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.source.bibliographicCitationAbel, R., Rybak, J., & Menzel, R. (2001). Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. Journal of Comparative Neurology, 437(3), 363-383spa
dc.source.bibliographicCitationAlloway TM. 1972. Learning and memory in insects. Annu. Rev. Entomol. 17:43–56spa
dc.source.bibliographicCitationApfelbach R, Russ D, Slotnick BM (1991) Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat. Chem Sens 16:209–218spa
dc.source.bibliographicCitationAshman, T. L., & Stanton, M. (1991). Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). Ecology, 72(3), 993-1003spa
dc.source.bibliographicCitationBidau, C. J., & Martí, D. A. (2007). Clinal variation of body size in Dichroplus pratensis (Orthoptera: Acrididae): inversion of Bergmann's and Rensch's rules. Annals of the Entomological Society of America, 100(6), 850-860spa
dc.source.bibliographicCitationBlackburn, T. M. et al. 1999. Geographic gradients in body size: a clarification of Bergmann's rule. Div. Distr. 5: 165–174.spa
dc.source.bibliographicCitationBlanckenhorn, W. U., & Demont, M. (2004). Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum?. Integrative and Comparative Biology, 44(6), 413-424.spa
dc.source.bibliographicCitationBuchmann CM, Schurr FM, Nathan R, Jeltsch F. Habitat loss and fragmentation affecting mammal and bird communities—The role of interspecific competition and individual space use. Ecological Informatics. 2013; 14:90–8spa
dc.source.bibliographicCitationChittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86(8), 361-377.spa
dc.source.bibliographicCitationCohen, J. M., Lajeunesse, M. J., & Rohr, J. R. (2018). A global synthesis of animal phenological responses to climate change. Nature Climate Change, 8(3), 224-228.spa
dc.source.bibliographicCitationDomic, A. I., & Capriles, J. M. (2009). Allometry and effects of extreme elevation on growth velocity of the Andean tree Polylepis tarapacana Philippi (Rosaceae). Plant ecology, 205(2), 223-234.spa
dc.source.bibliographicCitationDudley R (2001) The biomechanics and functional diversity of flight. In: Woiwod IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CABI, Cambridgespa
dc.source.bibliographicCitationElekonich, M. M., & Roberts, S. P. (2005). Honey bees as a model for understanding mechanisms of life history transitions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 141(4), 362-371.spa
dc.source.bibliographicCitationFaber T, Menzel R. (2001). Visualizing mushroom body response to a conditioned odor in honeybees. Naturwissenschaften 88:472–76.spa
dc.source.bibliographicCitationFarris, S. M., Robinson, G. E., Davis, R. L., & Fahrbach, S. E. (1999). Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera. Journal of Comparative Neurology, 414(1), 97-113.spa
dc.source.bibliographicCitationFrasnelli, E., Anfora, G., Trona, F., Tessarolo, F., & Vallortigara, G. (2010). Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behavioural brain research, 209(2), 221-225.spa
dc.source.bibliographicCitationGalizia CG, Menzel R. (2000). Odour perception in honeybees: Coding information in glomerular patterns. Curr Op Neurobiol 10:504–510.spa
dc.source.bibliographicCitationGreenfield M (2002) Signalers and receivers. Oxford University Press. Oxfordspa
dc.source.bibliographicCitationHegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions?. Ecology letters, 12(2), 184-195.spa
dc.source.bibliographicCitationHeinrich, B. (1993). The Hot Blooded Insects. Harvard University Press, Cambridge.spa
dc.source.bibliographicCitationHomberg, U. (1984). Processing of antennal information in extrinsic mushroom body neurons of the bee brain. Journal of Comparative Physiology A, 154(6), 825-836.spa
dc.source.bibliographicCitationJander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Structure and Development. 30: 179-193spa
dc.source.bibliographicCitationJeanson, R., Clark, R. M., Holbrook, C. T., Bertram, S. M., Fewell, J. H., & Kukuk, P. F. (2008). Division of labour and socially induced changes in response thresholds in associations of solitary halictine bees. Animal Behaviour, 76(3), 593-602.spa
dc.source.bibliographicCitationJin, Y. et al. 2007. Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai‐Xizang (Tibetan) Plateau. Belg. J. Zool. 137: 197–202.spa
dc.source.bibliographicCitationKaissling, K. E., & Renner, M. (1968). Specialized chemoreceptors in the pore plates of. Apis. Z. Vergl. Physiol, 59, 357-361.spa
dc.source.bibliographicCitationKelber C, Rössler W, Kleineidam CJ. (2006). Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. J Comp Neurol 496:395–405spa
dc.source.bibliographicCitationKen, T., Fuchs, S., Koeniger, N., & Ruiguang, Z. (2003). Morphological characterization of Apis cerana in the Yunnan Province of China. Apidologie, 34(6), 553-561.spa
dc.source.bibliographicCitationKlingenberg, C. P., Badyaev, A. V., Sowry, S. M., & Beckwith, N. J. (2001). Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. The American Naturalist, 157(1), 11-23).spa
dc.source.bibliographicCitationLevinton, J.1988. Genetics, paleontology and macroevolution. Cambridge University Press, Cambridgespa
dc.source.bibliographicCitationLiu X, Cheng Z, Yan L, Yin Z-Y (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68:164–174spa
dc.source.bibliographicCitationMalo, J. y Baonza, J. 2002. Are there predictable clines in plant–pollinator interactions along altitudinal gradients? The example of Cytisus scoparius (L.) Link in the Sierra de Guadarrama (Central Spain). Diversity and Distributions 8, 365–371spa
dc.source.bibliographicCitationMattu, V. K., & Verma, L. R. (1983). Comparative morphometric studies on the Indian honeybee of the north-west Himalayas 1. Tongue and antenna. Journal of Apicultural Research, 22(2), 79-85.spa
dc.source.bibliographicCitationMayr, E. 1956. Geographical character gradients and climatic adaptation. Evolution 10: 105–108.spa
dc.source.bibliographicCitationMcNab, B. K. 1971. On the ecological significance of Bergmann's rule. Ecology 52: 845–854.spa
dc.source.bibliographicCitationMeiri, S. et al. 2007. What determines conformity to Bergmann's rule?. Global Ecol. Biogeogr. 16: 788–794spa
dc.source.bibliographicCitationMenzel R. 1990. Learning, memory and “cognition” in honey bees. In: Kesner RP, Olten DS, editors. Neurobiology of comparative cognition. Hillsdale, NJ: Erlbaum Inc. p 237–292spa
dc.source.bibliographicCitationNijhout, H. F. (2003). The control of body size in insects. Developmental biology, 261(1), 1-9.spa
dc.source.bibliographicCitationOlalla-Tarraga, M.A. (2011). ‘Nullius in Bergmann’ or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos, 120, 1441–1444spa
dc.source.bibliographicCitationOsorio‐Canadas, S., Arnan, X., Rodrigo, A., Torné‐Noguera, A., Molowny, R., & Bosch, J. (2016). Body size phenology in a regional bee fauna: a temporal extension of Bergmann's rule. Ecology Letters, 19(12), 1395-1402.spa
dc.source.bibliographicCitationPage R.E. Jr., Erber J., Fondrk M.K. (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees ( Apis mellifera L.), J. Comp. Physiol. A 182, 489–500.spa
dc.source.bibliographicCitationPeters, M.K., Peisker, J., Steffan-Dewenter, I. & Hoiss, B. (2016). Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. J. Biogeogr., doi:10.1111/jbi.12768.spa
dc.source.bibliographicCitationReinhard, J., & Srinivasan, M. V. (2009). The role of scents in honey bee foraging and recruitment. Food exploitation by social insects: ecological, behavioral, and theoretical approaches, 1, 165-182.spa
dc.source.bibliographicCitationRiveros, A. J., & Gronenberg, W. (2010). Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behavioral ecology and sociobiology, 64(6), 955-966.spa
dc.source.bibliographicCitationRobertson, F.W., 1959. Studies in quantitative inheritance. XII. Cell size and number in relation to genetic and environmental variation of body size in Drosophila. Genetics 44, 869–896spa
dc.source.bibliographicCitationSchlichting, C. D. and Piggliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, Mass: Sinauer Associates.spa
dc.source.bibliographicCitationSchwarz, S., Albert, L., Wystrach, A., & Cheng, K. (2011). Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. Journal of Experimental Biology, 214(6), 901-906.spa
dc.source.bibliographicCitationSearcy, W. A. 1980. Optimum body sizes at different ambient temperatures: an energetics explanation of Bergmann's rule. J. Theor. Biol. 83: 579–593.spa
dc.source.bibliographicCitationShelomi, M. (2012). Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist, 180(4), 511-519.spa
dc.source.bibliographicCitationShingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007). Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29(6), 536-548.spa
dc.source.bibliographicCitationSpaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733- 739spa
dc.source.bibliographicCitationSteudel, K. et al. 1994. The biophysics of Bergmann's rule: a comparison of the effects of pelage and body size variation on metabolic rate. Can. J. Zool. 72: 70–77.spa
dc.source.bibliographicCitationStevenson, R.D. (1985). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat., 126, 362–386.spa
dc.source.bibliographicCitationT'ai, H. R., & Cane, J. H. (2002). The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evolutionary Ecology, 16(1), 49-65.spa
dc.source.bibliographicCitationTilman D. Resource competition and community structure. New Jersey, UK: Princeton University Press; 1982.spa
dc.source.bibliographicCitationVareschi E (1971) Duftunterscheidung bei der Honigbiene— Einzelzellableitungen und Verhaltensreaktionen. Zeitschrift fur Vergleichende Physiologie 75:143–173spa
dc.source.bibliographicCitationWenner AM, Meade DE, Friesen LJ. (1991). Recruitment, search behavior, and flight ranges of honey bees. Am Zool 31:768–82spa
dc.source.bibliographicCitationWilliams, R.J. & Martinez, N.D. (2000) Simple rules yield complex food webs. Nature, 404, 180–183.spa
dc.source.bibliographicCitationWoodward, G., & Hildrew, A. G. (2002). Body‐size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71(6), 1063-1074.spa
dc.source.bibliographicCitationYodzis P. Competition for space and the structure of ecological communities. Berlin, Germany: Springer Science & Business Media; 2013spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectMorfometríaspa
dc.subjectEcología sensorialspa
dc.subjectSensilas placodeasspa
dc.subjectLey de Bergmannspa
dc.subjectAltitudspa
dc.subjectTamañospa
dc.subject.ddcInvertebradosspa
dc.subject.keywordMorphometryspa
dc.subject.keywordSensory ecologyspa
dc.subject.keywordSensilla placodeaspa
dc.subject.keywordBergmann's lawspa
dc.subject.keywordAltitudespa
dc.subject.keywordSizespa
dc.titleEfectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis melliferaspa
dc.title.TranslatedTitleEffects of elevation on sensory allometry in the honey bee, Apis melliferaeng
dc.typebachelorThesiseng
dc.type.documentArtículospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Efectos-de-la-elevacion-sobre-la-alometria-sensorial-en-la-abeja-de-la-miel,-Apis-mellifera.pdf
Tamaño:
393.95 KB
Formato:
Adobe Portable Document Format
Descripción: