Ítem
Solo Metadatos

Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features

dc.creatorSzantoi,Zoltanspa
dc.creatorEscobedo,Francisco Jspa
dc.creatorAbd-Elrahman,Amrspa
dc.creatorPearlstine, Leonardspa
dc.creatorDewitt,Bonspa
dc.creatorSmith,Scotspa
dc.date.accessioned2020-08-06T16:20:32Z
dc.date.available2020-08-06T16:20:32Z
dc.date.created2015spa
dc.description.abstractMapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge from remotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using high spatial resolution imagery and machine learning image classification algorithms for mapping heterogeneous wetland plant communities. This study addresses this void by analyzing whether machine learning classifiers such as decision trees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedge communities using high resolution aerial imagery and image texture data in the Everglades National Park, Florida. In addition to spectral bands, the normalized difference vegetation index, and first- and second-order texture features derived from the near-infrared band were analyzed. Classifier accuracies were assessed using confusion tables and the calculated kappa coefficients of the resulting maps. The results indicated that an ANN (multilayer perceptron based on back propagation) algorithm produced a statistically significantly higher accuracy (82.04 %) than the DT (QUEST) algorithm (80.48 %) or the maximum likelihood (80.56 %) classifier (?<0.05). Findings show that using multiple window sizes provided the best results. First-order texture features also provided computational advantages and results that were not significantly different from those using second-order texture features.eng
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.1007/s10661-015-4426-5
dc.identifier.issnIISN: 0167-6369
dc.identifier.issnEISSN: 1573-2959
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/26050
dc.language.isoengspa
dc.publisherSpringer Naturespa
dc.relation.citationIssueNo. 187
dc.relation.citationTitleEnvironmental Monitoring and Assessment
dc.relation.ispartofEnvironmental Monitoring and Assessment, IISN:0167-6369;EISSN:1573-2959, No.187 (2015);262 pp.spa
dc.relation.urihttps://link.springer.com/article/10.1007/s10661-015-4426-5spa
dc.rights.accesRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.accesoRestringido (Acceso a grupos específicos)spa
dc.sourceEnvironmental Monitoring and Assessmentspa
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subject.keywordwetlandsspa
dc.subject.keywordmarsh swamp uplandspa
dc.subject.keywordgraminoid communitiesspa
dc.titleClassifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural featuresspa
dc.title.TranslatedTitleClasificación de comunidades de humedales espacialmente heterogéneas utilizando algoritmos de aprendizaje automático y características espectrales y texturalesspa
dc.typearticleeng
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.type.spaArtículospa
Archivos
Colecciones