Ítem
Acceso Abierto

Comparative genomics of Leishmania braziliensis promastigotes subjected to different temperatures

dc.contributorBallesteros, Nathalia
dc.contributorPatiño, Luz Helena
dc.contributorCruz-Saavedra, Lissa
dc.contributor.advisorRamírez, Juan David
dc.creatorVásquez Carreño, Nubia Marcela
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2019-02-11T14:04:29Z
dc.date.available2019-02-11T14:04:29Z
dc.date.created2019-01-17
dc.date.issued2019
dc.description.abstractThe leishmaniases are complex neglected diseases caused by the protozoan parasite Leishmania. Cutaneous leishmaniasis is the most common clinical manifestation around the world, and in the Americas the main aetiological agent is Leishmania braziliensis. In recent studies, chromosome and gene copy number variations (CNVs) have been highlighted as some mechanisms used by Leishmania species to adapt to environmental changes such as host change or drug pressure. However, no studies have described the impact of temperature shifts across the genome of Leishmania promastigotes and particularly in L. braziliensis. Therefore, we sequenced the genome (DNA-Seq) of L. braziliensis promastigotes from cultures subjected to three different temperatures, 24, 28, and 30°C; then, we analysed the aneuploidy, gene CNVs, SNPs and Indels compared with those at the control temperature (26°C). We found that the increase in temperature at 30°C had a negative effect on promastigotes proliferation; although, there were no changes in the somy, SNPs and Indels on the DNA among the three temperatures compared to the control. Only around 3% of the genes having significant copy number variation (CNVs) at each temperature showed some important genes for adaptation to temperature shifts. In conclusion, there is not a relevant genome response to the temperature shift in short-term, therefore the adaptation of this species to abiotic change could be occurring at transcriptome level. The ecological consequences are herein discussed.spa
dc.description.embargo2021-02-12 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2021-02-11spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_19033
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/19033
dc.language.isospa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitation1. Liang L, Gong P. Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. Environ Int. 2017;103:99–108.spa
dc.source.bibliographicCitation2. Lafferty KD, Mordecai EA. The rise and fall of infectious disease in a warmer world. F1000Research. 2016;5(0):2040.spa
dc.source.bibliographicCitation3. Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ Int [Internet]. 2016;86:14–23. Available from: http://dx.doi.org/10.1016/j.envint.2015.09.007spa
dc.source.bibliographicCitation4. Ramírez JD, Hernández C, León CM, Ayala MS, Flórez C, González C. Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Sci Rep [Internet]. 2016;6(March):1–10. Available from: http://dx.doi.org/10.1038/srep28266spa
dc.source.bibliographicCitation5. Patino LH, Mendez C, Rodriguez O, Romero Y, Velandia D, Alvarado M, et al. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Negl Trop Dis. 2017;11(8):1–15.spa
dc.source.bibliographicCitation6. Hlavacova J, Votypka J, Volf P. The Effect of Temperature on Leishmania (Kinetoplastida: Trypanosomatidae) Development in Sand Flies. J Med Entomol. 2013;50(4):1–4.spa
dc.source.bibliographicCitation7. Leon LL, Soares MJ, Temporal RM. Effects of Temperature on Promastigotes of Several Species of Leishmania. 1995;42(3):219–23.spa
dc.source.bibliographicCitation8. Zilberstein D, Shapira M. THE ROLE OF pH AND TEMPERATURE IN THE DEVELOPMENT OF LEISHMANIA PARASITES. Annu Rev Microbiol. 1994;48:449–70.spa
dc.source.bibliographicCitation9. Cardenas R, Sandoval C, Rodriguez-Morales a. P530 Impact of climate variability in the occurrence of leishmaniasis in Southern departments of Colombia. Int J Antimicrob Agents. 2007;29(2):S117–8.spa
dc.source.bibliographicCitation10. González C, Wang O, Strutz SE, González-Salazar C, Sánchez-Cordero V, Sarkar S. Climate change and risk of leishmaniasis in North America: Predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis. 2010;4(1).spa
dc.source.bibliographicCitation11. Koch LK, Kochmann J, Klimpel S, Cunze S. Modeling the climatic suitability of leishmaniasis vector species in Europe. Sci Rep [Internet]. 2017;7(1):1–10. Available from: http://dx.doi.org/10.1038/s41598-017-13822-1.spa
dc.source.bibliographicCitation12. Rajesh K, Sanjay K. Change in global Climate and Prevalence of Visceral Leishmaniasis. Int J Sci Res Publ. 2013;3(1):2250–3153.spa
dc.source.bibliographicCitation13. Lawrence F, Robert-gero M. Induction of heat shock and stress proteins promastigotes of three Leishmania species. Proc Natl Acad Sci USA. 1985;82(July):4414–7.spa
dc.source.bibliographicCitation14. Folgueira C, Quijada L, Soto M, Abanades DR, Alonso C, Requena JM. The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3′-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms. J Biol Chem. 2005;280(42):35172–83.spa
dc.source.bibliographicCitation15. Toye, Philip and HR "The influence of temperature and serum deprivation on the synthesis of heat-shock proteins and alpha and beta tubulin in promastigotes of L major. . M and biochemical parasitology 35. . (1989): 1-10. Leishmania major. 1988;167(March):1–10.spa
dc.source.bibliographicCitation16. Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int J Parasitol Drugs Drug Resist. 2018;8(2).spa
dc.source.bibliographicCitation17. Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P. Modulation of Aneuploidy in Leishmania In Vitro and In Vivo Environments and Its. MBio. 2017;8(3):e00599-17.spa
dc.source.bibliographicCitation18. Giovanni Bussotti, a B, Evi Gouzelou B, Mariana Côrtes Boité, c Ihcen Kherachi D, Zoubir Harrat, d Naouel Eddaikra D, Jeremy C. Mottram, e Maria Antoniou F, Vasiliki Christodoulou F, et al. crossm Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy. 2018;9(6):1–18.spa
dc.source.bibliographicCitation19. Barja PP, Pescher P, Bussotti G, Dumetz F, Imamura H, Kedra D, et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat Ecol Evol. 2017;1(12):1961.spa
dc.source.bibliographicCitation20. Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA, et al. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: Genomic and metabolomic characterization. Mol Microbiol. 2016;99(6):1134–48.spa
dc.source.bibliographicCitation21. Mondelaers A, Sanchez-Cañete MP, Hendrickx S, Eberhardt E, Garcia-Hernandez R, Lachaud L, et al. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PLoS One. 2016;11(4):e0154101.spa
dc.source.bibliographicCitation22. Downing T, Imamura H, Decuypere S. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome [Internet]. 2011;21:2143–56. Available from: http://genome.cshlp.org/content/early/2011/10/27/gr.123430.111.abstractspa
dc.source.bibliographicCitation23. Vanaerschot M, Decuypere S, Downing T, Imamura H, Stark O, De Doncker S, et al. Genetic markers for SSG resistance in leishmania donovani and SSG treatment failure in visceral leishmaniasis patients of the Indian subcontinent. J Infect Dis. 2012;206(5):752–5.spa
dc.source.bibliographicCitation24. Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF, Baptista RP, Baldeviano GC, Gerbasi R V., et al. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics [Internet]. 2015;16(1):1–10. Available from: http://dx.doi.org/10.1186/s12864-015-1928-zspa
dc.source.bibliographicCitation25. Coughlan S, Taylor AS, Feane E, Sanders M, Schonian G, Cotton JA, et al. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. R Soc Open Sci. 2018;5(4).spa
dc.source.bibliographicCitation26. Dujardin JC, Mannaert A, Durrant C, Cotton JA. Mosaic aneuploidy in Leishmania: The perspective of whole genome sequencing. Trends Parasitol [Internet]. 2014;30(12):554–5. Available from: http://dx.doi.org/10.1016/j.pt.2014.09.004spa
dc.source.bibliographicCitation27. Lean JL, Rind DH. How will Earth’s surface temperature change in future decades? Geophys Res Lett. 2009;36(15):1–5.spa
dc.source.bibliographicCitation28. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. 2011;2129–42.spa
dc.source.bibliographicCitation29. Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. Microbiology [Internet]. 2013 Dec 1 [cited 2019 Jan 5];159(Pt_12):2437–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24068238spa
dc.source.bibliographicCitation30. Nedwell DB. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol. 1999;30(2):101–11.spa
dc.source.bibliographicCitation31. Laffitte M-CN, Leprohon P, Papadopoulou B, Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research [Internet]. 2016;5:2350. Available from: http://f1000research.com/articles/5-2350/v1spa
dc.source.bibliographicCitation32. Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: Universal aneuploidy in Leishmania. Trends Parasitol [Internet]. 2012;28(9):370–6. Available from: http://dx.doi.org/10.1016/j.pt.2012.06.003spa
dc.source.bibliographicCitation33. Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol. 2011;13(2):274–83.spa
dc.source.bibliographicCitation34. Sterkers Y, Crobu L, Lachaud L, Pagès M, Bastien P. Parasexuality and mosaic aneuploidy in Leishmania: Alternative genetics. Trends in Parasitology. 2014.spa
dc.source.bibliographicCitation35. Ghouila A, Guerfali FZ, Atri C, Bali A, Attia H, Sghaier RM, et al. Comparative genomics of Tunisian Leishmania major isolates causing human cutaneous leishmaniasis with contrasting clinical severity. Infect Genet Evol. 2017;50.spa
dc.source.bibliographicCitation36. Nandan D, Yi T, Lopez M, Lai C, Reiner NE. Leishmania EF-1α activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J Biol Chem. 2002;277(51):50190–7.spa
dc.source.bibliographicCitation37. Hombach A, Ommen G, Macdonald A, Clos J. A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani. Cell Sci. 2014;127:4762–73.spa
dc.source.bibliographicCitation38. Iantorno SA, Durrant C, Khan A S, MJ, Beverley SM, Warren WC, Berriman M S, DL, Cotton JA GM 2017. G expression, By in L is regulated predominantly, Https://doi.org/ gene dosage. mBio 8:e01393-17., 10.1128/mBio.01393-17. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage. 2017;8(5):1–20.spa
dc.source.bibliographicCitation39. Hassani K, Antoniak E, Jardim A, Olivier M. Temperature-induced protein secretion by leishmania mexicana modulates macrophage signalling and function. PLoS One. 2011;6(5).spa
dc.source.bibliographicCitation40. de Koning TJ, Snell K, Duran M, Berger R, Poll-The B-T, Surtees R. L-serine in disease and development. Biochem J [Internet]. 2003 May 1 [cited 2018 Dec 26];371(Pt 3):653–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12534373spa
dc.source.bibliographicCitation41. Alves CR, Souza RS de, Charret K dos S, Côrtes LM de C, Sá-Silva MP de, Barral-Veloso L, et al. Understanding serine proteases implications on Leishmania spp lifecycle. Exp Parasitol [Internet]. 2018;184:67–81. Available from: https://doi.org/10.1016/j.exppara.2017.11.008spa
dc.source.bibliographicCitation42. Chaves LF, Calzada JE, Valderrama A, Saldaña A. Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá. PLoS Negl Trop Dis. 2014;8(10).spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectLeishmania braziliensisspa
dc.subjectPromastigotespa
dc.subjectTemperature increasespa
dc.subjectGene copy number variationspa
dc.subjectAneuploidyspa
dc.subject.ddcEnfermedadesspa
dc.subject.keywordLeishmania braziliensisspa
dc.subject.keywordPromastigotespa
dc.subject.keywordTemperature increasespa
dc.subject.keywordGene copy number variationspa
dc.subject.keywordAneuploidyspa
dc.subject.lembLeishmaniasisspa
dc.subject.lembInfecciones por protozoariosspa
dc.titleComparative genomics of Leishmania braziliensis promastigotes subjected to different temperaturesspa
dc.typebachelorThesiseng
dc.type.documentTrabajo de gradospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Vasquez-NubiaMarcela-2019.pdf
Tamaño:
1.41 MB
Formato:
Adobe Portable Document Format
Descripción: