Ítem
Acceso Abierto

Estudio de la red de coautores del proyecto Alianza EFI usando aprendizaje automático con grafos
dc.contributor.advisor | García Suaza, Andrés Felipe | |
dc.creator | Garavito Cárdenas, Carlos Stivert | |
dc.creator.degree | Magíster en Matemáticas Aplicadas y Ciencias de la Computación | |
dc.creator.degreetype | Full time | |
dc.date.accessioned | 2023-09-13T13:24:25Z | |
dc.date.available | 2023-09-13T13:24:25Z | |
dc.date.created | 2022-08-29 | |
dc.description | El presente trabajo muestra el uso de técnicas de aprendizaje automático basado en grafos para analizar la red de coautoría entre autores afiliados al Proyecto Alianza EFI. El documento se divide en tres capítulos: el primero ofrece una visión general completa del contexto global y local de la Inteligencia Artificial (IA) de manera que justifica la importancia de trabajar con temas de IA en el mundo actual. El segundo capítulo está dedicado a construir el marco teórico para trabajar con grafos y aprendizaje automático. El capítulo final muestra los resultados de la implementación del aprendizaje automático basado en grafos para tareas predictivas a nivel de nodos, enlaces y comunidades. Específicamente, este capítulo revela que el proyecto Alianza EFI involucra contribuciones de 390 autores únicos, asociados con 112 instituciones distintas, lo que resulta en 274 productos únicos. También demuestra que la Universidad del Rosario desempeña un papel central en las colaboraciones institucionales, en contraste con las demás instituciones dentro de la alianza. Finalmente, después de aplicar técnicas de aprendizaje automático basado en grafos, se observó que estas estrategias permiten a la alianza identificar nuevos temas de investigación para los autores, establecer nuevas conexiones entre autores aislados y descubrir nuevas comunidades de intereses de investigación. | |
dc.description.abstract | The present work demonstrates the use of graph machine learning techniques to analyze the co-authorship network among affiliated authors of the Alianza EFI Project. The document is divided into three chapters: the first one provides a comprehensive overview of the global and local context of Artificial Intelligence (AI) in a way that justifies the significance of working with AI topics in today’s world. The second chapter is dedicated to constructing the theoretical framework for working with graphs and machine learning. The final chapter showcases the results of implementing graph machine learning for predictive tasks at the node, link, and community levels. Specifically, this chapter reveals that the Alianza EFI project involves contributions from 390 unique authors, associated with 112 distinct institutions, resulting in 274 unique products. It also demonstrates that the Universidad del Rosario plays a central role in institutional collaborations, in contrast to the other institutions within the alliance. Finally, after applying graph machine learning techniques, it was observed that these strategies enable the alliance to identify new research topics for authors, establish new connections among isolated authors, and discover new communities of research interests. | |
dc.format.extent | 73 pp | |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | https://doi.org/10.48713/10336_40957 | |
dc.identifier.uri | https://repository.urosario.edu.co/handle/10336/40957 | |
dc.language.iso | eng | |
dc.publisher | Universidad del Rosario | spa |
dc.publisher.department | Escuela de Ingeniería, Ciencia y Tecnología | spa |
dc.publisher.program | Maestría en Matemáticas Aplicadas y Ciencias de la Computación | spa |
dc.rights | Attribution-NoDerivatives 4.0 International | * |
dc.rights.accesRights | info:eu-repo/semantics/openAccess | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
dc.source.bibliographicCitation | Perrault, Raymond (2022) Artificial Intelligence Index Report 2022. : Standford university; | |
dc.source.bibliographicCitation | Perrault, Raymond (2023) The AI Index 2023 Annual Report. : Stanford University; | |
dc.source.bibliographicCitation | Perrault, Raymond (2022) The AI Index 2022 Annual Report. : Stanford University; | |
dc.source.bibliographicCitation | (2022) Graph Neural Networks: Libraries, Tools, and Learning Resources. Consultado en: 2022/11/28. | |
dc.source.bibliographicCitation | Needham, Mark (2019) Graph Algorithms: Practical Examples in Apache Spark and Neo4j. London: O'REilly; | |
dc.source.bibliographicCitation | (2022) PyG is the ultimate library for Graph Neural Networks. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | (2022) Welcome to Deep Graph Library Tutorials and Documentation. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | (2022) DGL Documentation. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | (2022) PyG Documentation. 2022/11/29; Consultado en: 2022/11/29. Disponible en: https://github.com/pyg-team/pytorch_geometric. | |
dc.source.bibliographicCitation | (2022) Spektral Documentation. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | (2022) what is apache spark?. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | (2019) Introduction to the Neo4j Graph Database. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | (2022) Stellargraph documentation. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | Auten, Adam; et al (2020) Hardware accelaration of graph neural networks. : IEEE; | |
dc.source.bibliographicCitation | (2020) What is a GPU and do you need one in Deep Learning?. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | (2022) Sobre la Alianza EFI. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | Barabási, Albert-László (2022) Network science. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | Iosifidis, Anastasios, Alexandros; Tefas (2022) Deep Learning for Robot Perception and Cognition. : Academic Press; | |
dc.source.bibliographicCitation | Hamilton, William L (2020) Graph Representation Learning. En: Synthesis Lectures on Artificial Intelligence and Machine Learning. Vol. 14; No. 3; pp. 1-159 : Morgan and Claypool; | |
dc.source.bibliographicCitation | Bacciu, Davide; Errica, Federico; Micheli, Alessio; Podda, Marco (2020) A gentle introduction to deep learning for graphs. En: Neural Networks. Vol. 129; pp. 203-221 1879-2782; Disponible en: http://dx.doi.org/10.1016/j.neunet.2020.06.006; https://www.ncbi.nlm.nih.gov/pubmed/32559609. Disponible en: 10.1016/j.neunet.2020.06.006. | |
dc.source.bibliographicCitation | Sanchez-Lengeling, Benjamin; et al (2021) A Gentle Introduction to Graph Neural Networks. Consultado en: 2022/11/29. | |
dc.source.bibliographicCitation | Xia, Feng; Sun, Ke; Yu, Shuo; Aziz, Abdul; Wan, Liangtian; Pan, Shirui; Liu, Huan (2021) Graph Learning: A Survey. En: IEEE Transactions on Artificial Intelligence. Vol. 2; pp. 109-127 : IEEE; Disponible en: http://dx.doi.org/10.1109/tai.2021.3076021. Disponible en: 10.1109/tai.2021.3076021. | |
dc.source.bibliographicCitation | (2022) Recomendaciones de la misión de expertos IA. Disponible en: https://inteligenciaartificial.gov.co/static/img/201021_Mision_de_Expertos_en_IA_de_Colombia.pdf. | |
dc.source.bibliographicCitation | Bharath, Anil A (2017) Generative Adversarial Networks: An Overview. En: IEEE-SPM.: IEEE; | |
dc.source.bibliographicCitation | Russell, Stuart J; Norvig, Peter (2010) Artificial Intelligence: A Modern Approach. : Pearson; | |
dc.source.bibliographicCitation | Oliveira, Edgar Thiago De (2023) Deep Learning and its Applications today. Disponible en: https://www.nucleodoconhecimento.com.br/business-administration/deep-learning-2. | |
dc.source.bibliographicCitation | Elinas, Pantelis (2019) Knowing Your Neighbours: Machine Learning on Graphs. Disponible en: https://medium.com/p/9b7c3d0d5896. | |
dc.source.bibliographicCitation | Leskovec, Jure (2020) CS224W: Machine Learning with Graphs. Disponible en: http://snap.stanford.edu/class/cs224w-2020/slides/06-GNN1.pdf. | |
dc.source.bibliographicCitation | Brandes, Ulrik (2001) A Faster Algorithm for Betweenness Centrality. En: Journal of Mathematical Sociology. | |
dc.source.bibliographicCitation | L Ma (2021) Graph Global Overlap Measure: Katz Index. Disponible en: https://datumorphism.leima.is/cards/graph/graph-global-overlap-katz-index/. | |
dc.source.bibliographicCitation | Aditya Grover, Jure Leskovec (2016) node2vec: Scalable Feature Learning for Networks. En: KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on. Disponible en: http://dx.doi.org/10.1145/2939672.2939754. Disponible en: 10.1145/2939672.2939754. | |
dc.source.bibliographicCitation | Masui, Tomonori (2022) Graph Neural Networks with PyG on Node Classification, Link Prediction,. Disponible en: https://towardsdatascience.com/graph-neural-networks-with-pyg-on-node-classification-link-prediction-and-anomaly-detection-14aa38fe1275. | |
dc.source.bibliographicCitation | Droste, Benedikt (2021) Google Colab Pro+: Is it worth $\textdollar49.99?$. Disponible en: https://towardsdatascience.com/google-colab-pro-is-it-worth-49-99-c542770b8e56. | |
dc.source.bibliographicCitation | Aric A. Hagberg, Daniel A Schult; Swart, Pieter J (2008) Exploring network structure, dynamics, and function using NetworkX. En: KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on. pp. 11–15 : Proceedings of the 7th Python in Science Conference (SciPy2008); Disponible en: http://dx.doi.org/10.1145/2939672.2939754. Disponible en: 10.1145/2939672.2939754. | |
dc.source.bibliographicCitation | Chaudhary, Mukesh (2020) TF-IDF Vectorizer scikit-learn. Disponible en: https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a. | |
dc.source.bibliographicCitation | (2022) AI in Colombia. Consultado en: 2022/11/28. | |
dc.source.bibliographicCitation | Newman, Mark (2010) Networks: An Introduction. New York, NY: Oxford University Press; 9780199206650; | |
dc.source.bibliographicCitation | Garfield, Eugene (1972) Citation analysis as a tool in journal evaluation. En: Science. Vol. 178; No. 4060; pp. 471-479 : American Association for the Advancement of Science; Disponible en: http://dx.doi.org/10.1126/science.178.4060.471. Disponible en: 10.1126/science.178.4060.471. | |
dc.source.bibliographicCitation | Wu, Zonghan; Pan, Shirui; Long, Guodong; Jiang, Jing; Chang, Xiaojun; Zhang, Chengqi (2021) A comprehensive survey on graph neural networks. En: IEEE Transactions on Neural Networks and Learning Systems. Vol. 32; No. 1; pp. 4-24 : IEEE; Disponible en: http://dx.doi.org/10.1109/TNNLS.2020.2978386. Disponible en: 10.1109/TNNLS.2020.2978386. | |
dc.source.instname | instname:Universidad del Rosario | |
dc.source.reponame | reponame:Repositorio Institucional EdocUR | spa |
dc.subject | Machine learning | |
dc.subject | Deep learning | |
dc.subject | Graphs | |
dc.subject | Graph machine learning | |
dc.subject.keyword | Machine learning | |
dc.subject.keyword | Deep learning | |
dc.subject.keyword | Graphs | |
dc.subject.keyword | Graph machine learning | |
dc.title | Estudio de la red de coautores del proyecto Alianza EFI usando aprendizaje automático con grafos | |
dc.title.TranslatedTitle | Study of the co-authorship network of the project Alianza EFI using graph machine learning | |
dc.type | bachelorThesis | |
dc.type.document | Trabajo de grado | |
dc.type.spa | Trabajo de grado | |
local.department.report | Escuela de Ingeniería, Ciencia y Tecnología |