Ítem
Acceso Abierto

Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto

dc.contributor.advisorMuñoz Díaz, Marina
dc.contributor.gruplacGrupo de Investigaciones Microbiológicas UR (GIMUR)
dc.creatorFernández Sánchez, Juan Diego
dc.creator.degreeBiólogo
dc.creator.degreeLevelPregrado
dc.creator.degreetypeFull time
dc.date.accessioned2024-09-03T20:58:06Z
dc.date.available2024-09-03T20:58:06Z
dc.date.created2024-08-22
dc.descriptionLa clase Clostridia está compuesta por bacterias con diversos roles potenciales, contando con especies comensales y otras patógenos oportunistas. Estas bacterias son clasificadas como anaerobias y están presentes a nivel intestinal de humanos y animales; sin embargo, la alta resistencia de sus esporas al oxígeno les permite ampliar su rango de dispersión, siendo encontrados en muestras ambientales de suelos y aguas. La presencia de este tipo de microorganismos en cuerpos de agua puede ser un marcador de pérdida de su calidad. Zonas en las que es frecuente el contacto entre poblaciones humanas y cuerpos hídricos pueden ser propensas a contaminación de diferentes tipos, siendo una de ellas los microorganismos, muchos de los cuales son de importancia clínica por su potencial patógeno. Este estudio tuvo como objetivo detectar y caracterizar a nivel genómico bacterias Clostridiales aisladas de muestras de agua, tomadas entre septiembre del 2022 hasta marzo del 2023 del Río Pasto. Para el proceso de caracterización se ensamblaron Genomas Metagenómicos Ensamblados (MAGs) en los cuales se identificaron marcadores de resistencia a antimicrobianos y factores de virulencia, siendo esto tema relevante de salud pública. Se ensamblaron 33 MAGs de alta calidad y cuatro de calidad media, correspondientes a 11 especies clostridiales, estando entre estas Clostridium perfringens, Clostridium tetani, Clostridium botulinum y Clostridioides difficile, que son medicamente relevantes. Pymaiobacter missiliensis y Clostridium sulfidigenes también fueron detectadas en este estudio, siendo especies Clostridiales recientemente descritas y poco estudiadas, por lo que no es claro su impacto sobre hospederos. La búsqueda de factores de virulencia a partir de los MAGs mostró la presencia de genes nag, junto con otros genes de este tipo frecuentes en C. perfringens. Adicionalmente, se encontraron marcadores de resistencia a antibióticos, especialmente asociados a resistencia a fluoroquinolonas, aminoglucósidos, lincosamidas, péptidos y tetraciclinas, ampliamente distribuidos en los MAGs obtenidos. En este estudio se identificó la presencia de 11 especies Clostridiales en cuerpos de agua, las cuales transportan factores de virulencia y marcadores de resistencia, revelando un riesgo microbiológico en el río Pasto.
dc.description.abstractThe Clostridia class comprises bacteria with diverse roles, including commensal species and opportunistic pathogens. These bacteria are classified as anaerobic and are present in the gut of animals, including humans. Their spores are highly oxygen resistant, allowing them to expand their distribution in environmental samples such as soil and water. The presence of these bacteria in water bodies is an indicator of low quality, and areas of frequent contact between humans and water bodies are prone to multiple sources of contamination, including microorganisms. In particular, the presence of Clostridia in water is clinically relevant due to its pathogenic potential. This study aimed to detect Clostridial bacteria from water samples collected in the Pasto River between September 2022 and March 2023 and characterize them at the genomic level. We assembled Metagenome-Assembled Genomes (MAGs) in which we identified antimicrobial resistance markers and virulence factors, making this a relevant public health study. A total of 33 high-quality and four medium-quality MAGs were assembled, corresponding to 11 species of these bacteria, including Clostridium perfringens, Clostridium tetani, Clostridium botulinum, and Clostridioides difficile, which are medically relevant clostridial species. Notably, we detected the presence of the rarely reported species Pymaiobacter missiliensis and Clostridium sulfidigenes, both recently described Clostridial species that are poorly studied and for which there are no reported infections. Among the virulence factors identified were nag and related genes frequently found in strain 13 of C. perfringens. We also detected antibiotic-resistance markers associated with fluoroquinolones, aminoglycosides, lincosamides, peptides, and tetracyclines in the MAGs assembled. This study identified 11 Clostridial species in water bodies, which carry virulence factors and resistance markers, revealing a microbiological risk in the Pasto River.
dc.description.sponsorshipFacultad de Ciencias Naturales de la Universidad del Rosario
dc.description.sponsorshipSistema General de Regalías
dc.format.extent34 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_43372
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/43372
dc.language.isospa
dc.publisherUniversidad del Rosario
dc.publisher.departmentFacultad de Ciencias Naturales
dc.publisher.programBiología
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.source.bibliographicCitationAdams, J. J., Gregg, K., Bayer, E. A., Boraston, A. B., & Smith, S. P. (2008). Structural basis of Clostridium perfringens toxin complex formation. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12194–12199. https://doi.org/10.1073/pnas.0803154105
dc.source.bibliographicCitationAkhi, M. T., Asl, S. B., Pirzadeh, T., Naghili, B., Yeganeh, F., Memar, Y., & Mohammadzadeh, Y. (2015). Antibiotic Sensitivity of Clostridium perfringens Isolated From Faeces in Tabriz. Iran. Jundishapur Journal of Microbiology, 8(7). https://doi.org/10.5812/jjm.20863v2
dc.source.bibliographicCitationAlcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., . . . McArthur, A. G. (2022). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690-D699. https://doi.org/10.1093/nar/gkac920
dc.source.bibliographicCitationAlneberg, J., Bjarnason, B. S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144-1146. https://doi.org/10.1038/nmeth.3103
dc.source.bibliographicCitationAndrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
dc.source.bibliographicCitationBien, J., Palagani, V., & Bozko, P. (2012). The intestinal microbiota dysbiosis andClostridium difficileinfection: is there a relationship with inflammatory bowel disease? Therapeutic Advances in Gastroenterology, 6(1), 53–68. https://doi.org/10.1177/1756283x12454590
dc.source.bibliographicCitationBilen, M., Mbogning, M., Cadoret, F., Dubourg, G., Daoud, Z., Fournier, P., & Raoult, D. (2017). ‘Pygmaiobacter massiliensis’ sp. nov., a new bacterium isolated from the human gut of a Pygmy woman. New Microbes and New Infections, 16, 37–38. https://doi.org/10.1016/j.nmni.2016.12.015
dc.source.bibliographicCitationBöer, T., Bengelsdorf, F. R., Bömeke, M., Daniel, R., & Poehlein, A. (2023). Genome-based metabolic and phylogenomic analysis of three Terrisporobacter species. PloS One, 18(10), e0290128. https://doi.org/10.1371/journal.pone.0290128
dc.source.bibliographicCitationBotes, M., De Kwaadsteniet, M., & Cloete, T. E. (2012). Application of quantitative PCR for the detection of microorganisms in water. Analytical And Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 405(1), 91-108. https://doi.org/10.1007/s00216-012-6399-3
dc.source.bibliographicCitationCassir, N., Benamar, S., & La Scola, B. B. (2016). Clostridium butyricum : from beneficial to a new emerging pathogen. Clinical Microbiology and Infection, 22(1), 37–45. https://doi.org/10.1016/j.cmi.2015.10.014
dc.source.bibliographicCitationCersosimo LM, Worley JN, Bry L. Approaching pathogenic Clostridia from a One Health perspective. bioRxiv [Preprint]. 2024 Jan 9:2024.01.08.574718. doi: 10.1101/2024.01.08.574718. Update in: Anaerobe. 2024 Jun;87:102839. doi: 10.1016/j.anaerobe.2024.102839. PMID: 38260382; PMCID: PMC10802438.
dc.source.bibliographicCitationChaumeil, P., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2019). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics, 36(6), 1925-1927. https://doi.org/10.1093/bioinformatics/btz848
dc.source.bibliographicCitationChapeton-Montes, D., Plourde, L., Bouchier, C., Ma, L., Diancourt, L., Criscuolo, A., Popoff, M. R., & Brüggemann, H. (2019). The population structure of Clostridium tetani deduced from its pan-genome. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47551-4
dc.source.bibliographicCitationChopra, I., & Roberts, M. (2001). Tetracycline Antibiotics: Mode of action, applications, molecular biology, and Epidemiology of Bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260. https://doi.org/10.1128/mmbr.65.2.232- 260.2001
dc.source.bibliographicCitationChukamnerd, A., Jeenkeawpiam, K., Chusri, S., Pomwised, R., Singkhamanan, K., & Surachat, K. (2023). BACSEQ: a User-Friendly automated pipeline for Whole-Genome sequence analysis of bacterial genomes. Microorganisms, 11(7), 1769. https://doi.org/10.3390/microorganisms11071769
dc.source.bibliographicCitationCohen, J. E., Wang, R., Shen, R., Wu, W. W., & Keller, J. E. (2017). Comparative pathogenomics of Clostridium tetani. PloS One, 12(8), e0182909. https://doi.org/10.1371/journal.pone.0182909
dc.source.bibliographicCitationCorporación Autónoma Regional del Nariño. (2019). Elaboración del plan de ordenación y manejo de la cuenca hidrográfica del río Juanambú. http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/32553
dc.source.bibliographicCitationCross, A. S. (2008). What is a virulence factor? Critical Care, 12(6), 197. https://doi.org/10.1186/cc7127
dc.source.bibliographicCitationDall’Agnol, R., Sahoo, P. K., Salomão, G. N., De Araújo, A. D. M., Da Silva, M. S., Powell, M. A., Ferreira, J., Junior, Ramos, S. J., Martins, G. C., Da Costa, M. F., & Guilherme, L. R. G. (2022). Soil-sediment linkage and trace element contamination in forested/deforested areas of the Itacaiúnas River Watershed, Brazil: To what extent land-use change plays a role? Science of the Total Environment, 828, 154327. https://doi.org/10.1016/j.scitotenv.2022.154327
dc.source.bibliographicCitationDingle, K. E., Elliott, B., Robinson, E., Griffiths, D., Eyre, D. W., Stoesser, N., Vaughan, A., Golubchik, T., Fawley, W. N., Wilcox, M. H., Peto, T. E., Walker, A. S., Riley, T. V., Crook, D. W., & Didelot, X. (2013). Evolutionary History of the Clostridium difficile Pathogenicity Locus. Genome Biology and Evolution, 6(1), 36–52. https://doi.org/10.1093/gbe/evt204
dc.source.bibliographicCitationDridi, L., Tankovic, J., & Petit, J. (2004). CdeA of Clostridium difficile, a New Multidrug Efflux Transporter of the MATE Family. Microbial Drug Resistance, 10(3), 191–196. https://doi.org/10.1089/mdr.2004.10.191
dc.source.bibliographicCitationDu P, Cao B, Wang J, Li W, Jia H, Zhang W, Lu J, Li Z, Yu H, Chen C, Cheng Y. Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. J Clin Microbiol. 2014 Sep;52(9):3264-70. doi: 10.1128/JCM.03487-13. Epub 2014 Jun 23. PMID: 24958798; PMCID: PMC4313148.
dc.source.bibliographicCitationEspelund, M., & Klaveness, D. (2014). Botulism outbreaks in natural environments – an update. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00287
dc.source.bibliographicCitationFreier, L., Zacharias, N., Gemein, S., Gebel, J., Engelhart, S., Exner, M., & Mutters, N. T. (2023). Environmental Contamination and Persistence of Clostridioides difficile in Hospital Wastewater Systems. Applied and Environmental Microbiology, 89(5). https://doi.org/10.1128/aem.00014-23
dc.source.bibliographicCitationGerman Center for Infection Research (2024). Resistance gene https://www.dzif.de/en/glossary/resistance-gene.
dc.source.bibliographicCitationGupta, A., Gupta, R., & Singh, R. L. (2016). Microbes and Environment. En Springer eBooks (pp. 43-84). https://doi.org/10.1007/978-981-10-1866-4_3
dc.source.bibliographicCitationHuerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., Von Mering, C., & Bork, P. (2018). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1), D309-D314. https://doi.org/10.1093/nar/gky1085
dc.source.bibliographicCitationJaime Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia K Forslund, Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars J Jensen, Christian von Mering, Peer Bork Nucleic Acids Res. 2019 Jan 8; 47(Database issue): D309–D314. doi: 10.1093/nar/gky1085
dc.source.bibliographicCitationJanezic, S., Potocnik, M., Zidaric, V., & Rupnik, M. (2016). Highly Divergent Clostridium difficile Strains Isolated from the Environment. PloS One, 11(11), e0167101. https://doi.org/10.1371/journal.pone.0167101
dc.source.bibliographicCitationJátiva, C. L. (2009). El Río Pasto como elemento conector de la ciudad (Parque Central Pasto). Recuperado de: http://hdl.handle.net/10554/4001.
dc.source.bibliographicCitationJohnson, B. B., & Heuck, A. P. (2014). Perfringolysin O Structure and mechanism of pore formation as a paradigm for Cholesterol-Dependent cytolysins. In Sub-cellular biochemistry/Subcellular biochemistry (pp. 63–81). https://doi.org/10.1007/978-94-017- 8881-6_5
dc.source.bibliographicCitationKang, D., Li, F., Kirton, E. S., Thomas, A., Egan, R. S., An, H., & Wang, Z. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, e7359. https://doi.org/10.7717/peerj.7359
dc.source.bibliographicCitationKator, H., & Rhodes, M. (2003). Detection, enumeration and identification of environmental microorganisms of public health significance. En Elsevier eBooks (pp. 113-144). https://doi.org/10.1016/b978-012470100-7/50009-1
dc.source.bibliographicCitationKellenberger, E. (2001). Exploring the unknown. EMBO Reports, 2(1), 5-7. https://doi.org/10.1093/embo-reports/kve014
dc.source.bibliographicCitationKim, N., Ma, J., Kim, W., Kim, J., Belenky, P., & Lee, I. (2024). Genome-resolved metagenomics: a game changer for microbiome medicine. Experimental & Molecular Medicine, 56(7), 1501–1512. https://doi.org/10.1038/s12276-024-01262-7
dc.source.bibliographicCitationKnight, D. R., & Riley, T. V. (2019). Genomic Delineation of Zoonotic Origins of Clostridium difficile. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00164
dc.source.bibliographicCitationLangmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25 (2009). https://doi.org/10.1186/gb-2009-10-3-r25
dc.source.bibliographicCitationLeón, D. F. (2023). Diagnóstico sobre la gestión en torno a la calidad del agua en el río Pasto. Recuperado de: http://hdl.handle.net/10554/64260.
dc.source.bibliographicCitationLi, M., Wang, Y., Hou, B., Chen, Y., Hu, M., Zhao, X., Zhang, Q., Li, L., Luo, Y., Liu, Y., & Cai, Y. (2024). Toxin gene detection and antibiotic resistance of Clostridium perfringens from aquatic sources. International Journal of Food Microbiology, 110642. https://doi.org/10.1016/j.ijfoodmicro.2024.110642
dc.source.bibliographicCitationLin, C., Wade, T., & Hilborn, E. (2015). Flooding and Clostridium difficile Infection: A Case-Crossover Analysis. International Journal of Environmental  Research and Public Health/International Journal of Environmental Research and Public Health, 12(6), 6948–6964. https://doi.org/10.3390/ijerph120606948
dc.source.bibliographicCitationLiu, B., Zheng, D., Zhou, S., Chen, L., & Yang, J. (2021). VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Research, 50(D1), D912-D917. https://doi.org/10.1093/nar/gkab1107
dc.source.bibliographicCitationLugli, G. A., Milani, C., Mancabelli, L., Turroni, F., Ferrario, C., Duranti, S., Van Sinderen, D., & Ventura, M. (2017). Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome, 5(1). https://doi.org/10.1186/s40168-016-0221-y
dc.source.bibliographicCitationLugli, G. A., Milani, C., Mancabelli, L., Turroni, F., Ferrario, C., Duranti, S., Van Sinderen, D., & Ventura, M. (2017). Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome, 5(1). https://doi.org/10.1186/s40168-016-0221-y
dc.source.bibliographicCitationMazzoli, R., Pescarolo, S., Gilli, G., Gilardi, G., & Valetti, F. (2024). Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnology Advances, 73, 108379. https://doi.org/10.1016/j.biotechadv.2024.108379
dc.source.bibliographicCitationMoreno LF. Gestión Integral del Agua en la Cuenca Alta del Río Pasto (2013). Mediante un Esquema de Pago por Servicios Ambientales. Universidad de Nariño [Internet].. Disponible en: https://core.ac.uk/download/pdf/147429716.pdf
dc.source.bibliographicCitationMueller-Spitz, S. R., Stewart, L. B., Klump, J. V., & McLellan, S. L. (2010). Freshwater Suspended Sediments and Sewage Are Reservoirs for Enterotoxin-Positive Clostridium perfringens. Applied and Environmental Microbiology, 76(16), 5556–5562. https://doi.org/10.1128/aem.01702-09
dc.source.bibliographicCitationMuñoz, M., Restrepo-Montoya, D., Kumar, N., Iraola, G., Herrera, G., Ríos-Chaparro, D. I., Díaz-Arévalo, D., Patarroyo, M. A., Lawley, T. D., & Ramírez, J. D. (2019). Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence, 10(1), 657–676. https://doi.org/10.1080/21505594.2019.1637699
dc.source.bibliographicCitationNurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res (2017) May;27(5):824-834. doi: 10.1101/gr.213959.116. Epub 2017 Mar 15. PMID: 28298430; PMCID: PMC5411777.
dc.source.bibliographicCitationParks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043-1055. https://doi.org/10.1101/gr.186072.114
dc.source.bibliographicCitationPeterson, J. W. (1996). Bacterial pathogenesis. Medical Microbiology - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK8526/
dc.source.bibliographicCitationPhilip Ewels, Måns Magnusson, Sverker Lundin, Max Käller, MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, Volume 32, Issue 19, October 2016, Pages 3047–3048, https://doi.org/10.1093/bioinformatics/btw354
dc.source.bibliographicCitationSchloss, P. D., & Handelsman, J. (2004). Status of the Microbial Census. Microbiology And Molecular Biology Reviews, 68(4), 686-691. https://doi.org/10.1128/mmbr.68.4.686-691.2004
dc.source.bibliographicCitationSchmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology, 75(5), 955–962. https://doi.org/10.1007/s00253-007-0945-5
dc.source.bibliographicCitationSeemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
dc.source.bibliographicCitationSeemann, T. (2016). ABRicate: mass screening of contigs for antiobiotic resistance genes. https://github.com/tseemann/abricate
dc.source.bibliographicCitationSetlow, P. (2014). Spore resistance properties. Microbiology Spectrum, 2(5). https://doi.org/10.1128/microbiolspec.tbs-0003-2012
dc.source.bibliographicCitationSetubal, J. C. (2021). Metagenome-assembled genomes: concepts, analogies, and challenges. Biophysical Reviews, 13(6), 905–909. https://doi.org/10.1007/s12551-021-00865-y
dc.source.bibliographicCitationShalaby, M., Catenazzi, A., Smith, M., Farrow, R., & Farcy, D. (2023). 157 an assessment of the prevalence of clostridium tetani in the environment. Annals of Emergency Medicine, 82(4), S68. https://doi.org/10.1016/j.annemergmed.2023.08.179
dc.source.bibliographicCitationShimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., & Hayashi, H. (2002). Complete genome sequence of Clostridium perfringens , an anaerobic flesh-eater. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 996–1001. https://doi.org/10.1073/pnas.022493799
dc.source.bibliographicCitationSieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7), 836-843. https://doi.org/10.1038/s41564-018-0171-1
dc.source.bibliographicCitationSloan, J., McMurry, L. M., Lyras, D., Levy, S. B., & Rood, J. I. (1994). The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline‐resistance determinants. Molecular Microbiology, 11(2), 403–415. https://doi.org/10.1111/j.1365-2958.1994.tb00320.x
dc.source.bibliographicCitationStelma, G. N. (2018). Use of bacterial spores in monitoring water quality and treatment. Journal of Water and Health, 16(4), 491–500. https://doi.org/10.2166/wh.2018.013
dc.source.bibliographicCitationSu, Y., Gao, R., Huang, F., Liang, B., Guo, J., Fan, L., Wang, A., & Gao, S. (2024). Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. Journal of Environmental Management, 354, 120331. https://doi.org/10.1016/j.jenvman.2024.120331
dc.source.bibliographicCitationSuchodolski, J. S. (2013). Gastrointestinal microbiota. In Elsevier eBooks (pp. 32–41). https://doi.org/10.1016/b978-1-4160-3661-6.00002-x
dc.source.bibliographicCitationSyuhadah, A. S. N., Ali, U., & Norazizah, M. (2020). A rare and fatal case of Terrisporobacter glycolicus bacteremia: Case report and review of literature. International Journal of Infectious Diseases, 101, 151. https://doi.org/10.1016/j.ijid.2020.09.410
dc.source.bibliographicCitationTortajada-Girbés, M. et al. (2021) 'Alimentary and Pharmaceutical Approach to Natural Antimicrobials against Clostridioides difficile Gastrointestinal Infection,' Foods, 10(5), p. 1124. https://doi.org/10.3390/foods10051124
dc.source.bibliographicCitationUzal, F. A., Vidal, J. E., McClane, B. A., & Gurjar, A. A. (2010). Clostridium perfringens toxins involved in mammalian veterinary diseases. PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917546/
dc.source.bibliographicCitationVentola, C.L. (2015) The Antibiotic Resistance Crisis: Part 1: Causes and threats. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/.
dc.source.bibliographicCitationWells CL, Wilkins TD. Clostridia: Sporeforming Anaerobic Bacilli. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 18. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8219/
dc.source.bibliographicCitationWu, Y., Simmons, B. A., & Singer, S. W. (2015). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4), 605-607. https://doi.org/10.1093/bioinformatics/btv638
dc.source.bibliographicCitationZeng, X., Liu, B., Zhou, J., Dai, Y., Han, C., Wang, L., Wu, Y., & Zhang, J. (2021). Complete genomic sequence and analysis of β2 toxin gene mapping of Clostridium perfringens JXJA17 isolated from piglets in China. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79333-8
dc.source.bibliographicCitationZhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.766364
dc.source.bibliographicCitationZhang, X., Song, M., Lv, P., Hao, G., & Sun, S. (2022). Effects of Clostridium butyricum on intestinal environment and gut microbiome under Salmonella infection. Poultry Science, 101(11), 102077. https://doi.org/10.1016/j.psj.2022.102077
dc.source.bibliographicCitationZhang, Y., Xiao, L., Wang, S., & Liu, F. (2019). Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum. Bioresource Technology, 283, 308-315. https://doi.org/10.1016/j.biortech.2019.03.088
dc.source.bibliographicCitationZhong, J. X., Zheng, H. R., Wang, Y. Y., Bai, L. L., Du, X. L., Wu, Y., & Lu, J. X. (2023). Molecular characteristics and phylogenetic analysis of Clostridium perfringens from different regions in China, from 2013 to 2021. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1195083
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectClostridiales
dc.subjectPatógenos
dc.subjectMarcadores de resistencia microbiana
dc.subjectFactores de Virulencia
dc.subject.keywordClostridials
dc.subject.keywordPathogens
dc.subject.keywordAntimicrobial Resistance Markers
dc.subject.keywordVirulence Factors
dc.titleCaracterización genómica de especies de Clostridiales Circulantes en el río Pasto
dc.title.TranslatedTitleGenomic Characterization of Circulating Clostridial Species in the Pasto River
dc.typebachelorThesis
dc.type.documentTrabajo de grado
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de grado
local.department.reportFacultad de Ciencias Naturales
local.regionesBogotá
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Caracterizacion_genomica_de_especies_de_Clostridiales_Circulantes_en_el_rio_PastoFernandezSanchez-JuanDiego-2024.pdf
Tamaño:
859.06 KB
Formato:
Adobe Portable Document Format
Descripción: