Identidad Institucional CRAI
Logo EdocUR
    • English
    • español
    • português
  •  Work Submission
  •  FAQs
  • English 
    • English
    • español
    • português
  • Login

Contacto

Twitter

Facebook

Youtube

View Item 
  •   Repositorio Institucional EdocUR - Universidad del Rosario
  • Investigación
  • Artículos
  • View Item
  •   Repositorio Institucional EdocUR - Universidad del Rosario
  • Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins

  • Exportar citas ▼
    • Exportar a Mendeley
    • Exportar a BibTex
Thumbnail
Date
2011
Author
Restrepo-Montoya, Daniel
Pino, Camilo
Nino, Luis F
Patarroyo, Manuel-Elkin
Patarroyo, Manuel A.Autoridad Universidad de Rosario
Métricas

Share
Citation
URI
https://doi.org/10.1186/1471-2105-12-21
https://repository.urosario.edu.co/handle/10336/21891

Summary

Background: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins.Results: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search.Conclusions: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/. © 2011 Restrepo-Montoya et al; licensee BioMed Central Ltd.

Keyword

Support vector machine ; Dipeptide ; Matthews correlation coefficient ; Gaussian Kernel function ;

Subject

Enfermedades ; Microbiología ;

Source link

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-21...

Show full item record

Collections
  • Artículos [6079]
Política de Acceso Abierto URPortal de Revistas URRepositorio de Datos de Investigación URCiencia Abierta UR
 

 

Browse

All of DSpaceCommunities & CollectionsTitlesAuthorsTypeSubjectsAdvisorBy Issue DateThis CollectionTitlesAuthorsTypeSubjectsAdvisorBy Issue Date

My Account

LoginRegister

Statistics

View Usage Statistics
Política de Acceso Abierto URPortal de Revistas URRepositorio de Datos de Investigación URCiencia Abierta UR