Ítem
Acceso Abierto

Phenotypic and molecular characterization of the largest worldwide cluster of hereditary angioedema type 1
Título de la revista
Autores
Arias-Flórez, Juan Sebastian
Ramírez, Sandra Ximena
Bayona-Gomez, Bibiana
Castro-Castillo, Lina
Correa-Martínez, Valeria
Sánchez-Gomez, Yasmin
Usaquén.Martínez, William
Casas Vargas, Lilian-Andrea
Olmos Olmos, Carlos Eduardo
Contreras Barvo, Nora
Archivos
Fecha
2024-12-18
Directores
ISSN de la revista
Título del volumen
Editor
Buscar en:
Métricas alternativas
Resumen
Hereditary angioedema type 1 (HAE1) is a rare, genetically heterogeneous, and autosomal dominant disease. It is a highly variable, insidious, and potentially life-threatening condition, characterized by sudden local, often asymmetric, and episodic subcutaneous and submucosal swelling, caused by pathogenic molecular variants in the SERPING1 gene, which codes for C1-Inhibitor protein. This study performed the phenotypic and molecular characterization of a HAE1 cluster that includes the largest number of affected worldwide. A geographically HAE1 cluster was found in the northeast Colombian department of Boyaca, which accounts for four unrelated families, with 79 suspected to be affected members. NextGeneration Sequencing (NGS) was performed in 2 out of 4 families (Family 1 and Family 4), identifying the variants c.1420C>T and c.1238T>G, respectively. The latter corresponds to a novel mutation. For Families 2 and 3, the c.1417G>A variant was confirmed by Sanger sequencing. This variant had been previously reported to the patient prior to the beginning of this study. Using deep-learning methods, the structure of the C1-Inhibitor protein, p. Gln474* and p.Met413Arg was predicted, and we propose the molecular mechanism related to the etiology of the disease. Using Sanger sequencing, family segregation analysis was performed on 44 individuals belonging to the families analyzed. The identification of this cluster and its molecular analysis will allow the timely identification of new cases and the establishment of adequate treatment strategies. Our results establish the importance of performing population genetic studies in a multi-cluster region for genetic diseases.
Abstract
Hereditary angioedema type 1 (HAE1) is a rare, genetically heterogeneous, and autosomal dominant disease. It is a highly variable, insidious, and potentially life-threatening condition, characterized by sudden local, often asymmetric, and episodic subcutaneous and submucosal swelling, caused by pathogenic molecular variants in the SERPING1 gene, which codes for C1-Inhibitor protein. This study performed the phenotypic and molecular characterization of a HAE1 cluster that includes the largest number of affected worldwide. A geographically HAE1 cluster was found in the northeast Colombian department of Boyaca, which accounts for four unrelated families, with 79 suspected to be affected members. NextGeneration Sequencing (NGS) was performed in 2 out of 4 families (Family 1 and Family 4), identifying the variants c.1420C>T and c.1238T>G, respectively. The latter corresponds to a novel mutation. For Families 2 and 3, the c.1417G>A variant was confirmed by Sanger sequencing. This variant had been previously reported to the patient prior to the beginning of this study. Using deep-learning methods, the structure of the C1-Inhibitor protein, p. Gln474* and p.Met413Arg was predicted, and we propose the molecular mechanism related to the etiology of the disease. Using Sanger sequencing, family segregation analysis was performed on 44 individuals belonging to the families analyzed. The identification of this cluster and its molecular analysis will allow the timely identification of new cases and the establishment of adequate treatment strategies. Our results establish the importance of performing population genetic studies in a multi-cluster region for genetic diseases.
Palabras clave
Hereditary angioedema type 1 , SERPING1 gene , C1 Inhibitor phenotypes
Keywords
C1 Inhibitor phenotypes