Ítem
Acceso Abierto

Sistema inteligente de detección de asentamientos humanos informales en el municipio de Neiva Huila empleando aprendizaje profundo

dc.contributor.advisorSalazar Centeno, Cesar Augusto
dc.creatorRojas Serrano, Héctor Leandro
dc.creatorHenao González, Jorge Esneider
dc.creator.degreeMagíster en Matemáticas Aplicadas y Ciencias de la Computación
dc.creator.degreetypePart time
dc.date.accessioned2024-02-26T19:23:42Z
dc.date.available2024-02-26T19:23:42Z
dc.date.created2023-12-13
dc.descriptionLos asentamientos informales en Colombia son una problemática latente que requiere de continuo control y verificación por parte de los entes territoriales, en esta investigación, enfocada en el municipio de Neiva Huila, dicho proceso lleva décadas manifestándose de diferentes formas y su dinámica obedece a múltiples factores como el político, social y ambiental[1]. A pesar de los esfuerzos legislativos, como lo define la ley 388 de 1997 que busca proveer a los municipios de mecanismos apropiados para la correcta administración y gestión del territorio, la realidad muestra que aún existen muchos aspectos que intervenir. Los procesos de reconocimiento pueden llegar a representar desafíos en la administración pública, desde sus orígenes en la modernidad colombiana, los asentamientos se caracterizan por albergar población vulnerable, donde, la labor del Estado es insuficiente [2]. Sumado a ello, los problemas socioeconómicos y ambientales se ciernen sobre estas poblaciones representando un proceso complejo que requiere de atención especializada[3]. Esta investigación presenta en primera medida una descripción del estado actual de los asentamientos informales en Colombia. En el marco teórico, se hará una revisión de la literatura en cuanto a la evolución de los procesos y metodologías de clasificación de imágenes, así como la aplicación de casos alrededor del mundo en la detección de asentamiento informales. Además, se incluirá algunos trabajos relacionados a la clasificación y detección de zonas geográficas y trabajos de investigación en otras problemáticas que fueron útiles para el desarrollo de la investigación. Finalmente, este trabajo presenta un sistema inteligente para la detección y clasificación de asentamiento informales para el municipio de Neiva, Huila, utilizando técnicas de aprendizaje por transferencia o (transfer learning), donde este recurso puede convertirse en un recurso valioso para las entidades dedicadas a esta problemática, ofreciendo un método ágil y eficaz para la identificación de dichos territorios.
dc.description.abstractInformal settlements in Colombia are a latent problem that requires continuous control and verification by territorial entities. In this research, focused on the municipality of Neiva Huila, this process has been manifesting itself in different ways for decades and its dynamics obey multiple factors. such as political, social, and environmental [1]. Despite the legislative efforts, as defined by Law 388 of 1997, which aims to provide municipalities with appropriate mechanisms for the proper administration and management of the territory, reality shows that there are still many aspects to address. The process of recognition can represent challenges in public administration, and from their origins in Colombian modernity, settlements are characterized by housing vulnerable populations, where the government and its mechanism are insufficient [2]. In addition to this, socioeconomic and environmental problems loom over these populations, representing a complex process that requires specialized attention [3]. This research first presents a description of the current state of informal settlements in Colombia. In the theoretical framework, a review of the literature about the evolution of image classification processes and methodologies will be described, as well as the application of cases around the world in the detection of informal settlements. Additionally, some works related to the classification and detection of geographical areas and research work on other problems that were useful for the development of the research will be included. Finally, this work presents an intelligent system for the detection and classification of informal settlements for the municipality of Neiva, Huila, using transfer learning techniques, where this resource can become a valuable resource for entities dedicated to this problem, offering an agile and effective method for the identification of these territories.
dc.format.extent71 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_42290
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/42290
dc.language.isospa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentEscuela de Ingeniería, Ciencia y Tecnologíaspa
dc.publisher.programMaestría en Matemáticas Aplicadas y Ciencias de la Computaciónspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.bibliographicCitation“Ilegalidad urbana y producción del espacio en el borde del río Las Ceibas en la ciudad de Neiva, Huila*”, Accessed: Jun. 10, 2023. [Online]. Available: https://revistas.javeriana.edu.co/files-articulos/CVU/15%20(2022)/629771821013/index.html
dc.source.bibliographicCitationH. Uribe Castro, “Los asentamientos ilegales en Colombia: las contradicciones de la economía-mundo capitalista en la sociedad global,” Latinoamérica. Revista de estudios Latinoamericanos, no. 53, pp. 169–200, Dec. 2011.
dc.source.bibliographicCitationK. Therán-Nieto, R. Pérez-Arévalo, and D. García-Estrada, “Asentamientos informales en la periferia urbana de áreas metropolitanas. El caso de Soledad, Colombia,” urbe, Rev. Bras. Gest. Urbana, vol. 14, p. e20210275, Dec. 2022, doi: 10.1590/2175-3369.014.e20210275.
dc.source.bibliographicCitationK. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol. Cybernetics, vol. 36, no. 4, pp. 193–202, Apr. 1980, doi: 10.1007/BF00344251.
dc.source.bibliographicCitationC. G. Gross, C. E. Rocha-Miranda, and D. B. Bender, “Visual properties of neurons in inferotemporal cortex of the Macaque.,” Journal of Neurophysiology, vol. 35, no. 1, pp. 96–111, Jan. 1972, doi: 10.1152/jn.1972.35.1.96.
dc.source.bibliographicCitationY. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.
dc.source.bibliographicCitationA. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2012. Accessed: Jun. 05, 2023. [Online]. Available: https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
dc.source.bibliographicCitationD. Kohli, R. Sliuzas, N. Kerle, and A. Stein, “An ontology of slums for image-based classification,” Computers, Environment and Urban Systems, vol. 36, no. 2, pp. 154–163, Mar. 2012, doi: 10.1016/j.compenvurbsys.2011.11.001.
dc.source.bibliographicCitationJ. Pratomo, M. Kuffer, J. Martinez, and D. Kohli, “Coupling Uncertainties with Accuracy Assessment in Object-Based Slum Detections, Case Study: Jakarta, Indonesia,” Remote Sensing, vol. 9, no. 11, Art. no. 11, Nov. 2017, doi: 10.3390/rs9111164.
dc.source.bibliographicCitationE. Guirado, S. Tabik, D. Alcaraz-Segura, J. Cabello, and F. Herrera, “Deep-learning Versus OBIA for Scattered Shrub Detection with Google Earth Imagery: Ziziphus lotus as Case Study,” Remote Sensing, vol. 9, no. 12, Art. no. 12, Dec. 2017, doi: 10.3390/rs9121220.
dc.source.bibliographicCitationE. Ranguelova, B. Weel, D. Roy, M. Kuffer, K. Pfeffer, and M. Lees, “Image based classification of slums, built-up and non-built-up areas in Kalyan and Bangalore, India,” European Journal of Remote Sensing, vol. 52, no. sup1, pp. 40–61, Mar. 2019, doi: 10.1080/22797254.2018.1535838.
dc.source.bibliographicCitationG. Leonita, M. Kuffer, R. Sliuzas, and C. Persello, “Machine Learning-Based Slum Mapping in Support of Slum Upgrading Programs: The Case of Bandung City, Indonesia,” Remote Sensing, vol. 10, no. 10, Art. no. 10, Oct. 2018, doi: 10.3390/rs10101522.
dc.source.bibliographicCitationA. Ajami, M. Kuffer, C. Persello, and K. Pfeffer, “Identifying a Slums’ Degree of Deprivation from VHR Images Using Convolutional Neural Networks,” Remote Sensing, vol. 11, no. 11, Art. no. 11, Jan. 2019, doi: 10.3390/rs11111282.
dc.source.bibliographicCitationM. Wurm, T. Stark, X. X. Zhu, M. Weigand, and H. Taubenböck, “Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 59–69, Apr. 2019, doi: 10.1016/j.isprsjprs.2019.02.006.
dc.source.bibliographicCitationV. N. Vinaykumar, J. A. Babu, and J. Frnda, “Optimal guidance whale optimization algorithm and hybrid deep learning networks for land use land cover classification,” EURASIP Journal on Advances in Signal Processing, vol. 2023, no. 1, p. 13, Jan. 2023, doi: 10.1186/s13634-023-00980-w.
dc.source.bibliographicCitationM. Carranza-García, J. García-Gutiérrez, and J. C. Riquelme, “A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks,” Remote Sensing, vol. 11, no. 3, Art. no. 3, Jan. 2019, doi: 10.3390/rs11030274.
dc.source.bibliographicCitationM. Alkhelaiwi, W. Boulila, J. Ahmad, A. Koubaa, and M. Driss, “An Efficient Approach Based on Privacy-Preserving Deep Learning for Satellite Image Classification,” Remote Sensing, vol. 13, no. 11, Art. no. 11, Jan. 2021, doi: 10.3390/rs13112221.
dc.source.bibliographicCitationO. Sefrin, F. M. Riese, and S. Keller, “Deep Learning for Land Cover Change Detection,” Remote Sensing, vol. 13, no. 1, Art. no. 1, Jan. 2021, doi: 10.3390/rs13010078.
dc.source.bibliographicCitationP. Helber, B. Bischke, A. Dengel, and D. Borth, “EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification,” Aug. 2017, doi: 10.1109/JSTARS.2019.2918242.
dc.source.bibliographicCitationJ. C. Duque, J. E. Patino, and A. Betancourt, “Exploring the Potential of Machine Learning for Automatic Slum Identification from VHR Imagery,” Remote Sensing, vol. 9, no. 9, Art. no. 9, Sep. 2017, doi: 10.3390/rs9090895.
dc.source.bibliographicCitationA. S. S. L. Suárez L, A. F. Jiménez L, M. Castro-Franco, and A. Cruz-Roa, “Clasificación y mapeo automático de coberturas del suelo en imágenes satelitales utilizando Redes Neuronales Convolucionales.” Accessed: Mar. 20, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-37092017000300064
dc.source.bibliographicCitationL. F. Gómez Ossa, “Aplicación de redes neuronales artificiales en la modelación de la deforestación asociada a nuevos proyectos de infraestructura vial en las regiones del Nordeste y Bajo Cauca del departamento de Antioquia,” Oct. 2014, Accessed: Mar. 20, 2023. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/52176
dc.source.bibliographicCitationA. Montero Leguizamón, “Aplicación de una red neuronal convolucional para la predicción de mallas de población en el área metropolitana de Bogotá,” Trabajo de grado - Maestría, Universidad Nacional de Colombia, 2021. Accessed: Mar. 20, 2023. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/80363
dc.source.bibliographicCitationL. S. Valdés Ávila and J. M. Baquero Vanegas, “Deep Learning aplicado a imágenes satelitales como herramienta de detección de viviendas sin servicio de energía en el caserı́o Media Luna-Uribia-Guajira,” 2019, Accessed: Mar. 20, 2023. [Online]. Available: http://repository.udistrital.edu.co/handle/11349/16030
dc.source.bibliographicCitationS. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010, doi: 10.1109/TKDE.2009.191.
dc.source.bibliographicCitationF. J. Montalbo, “A Computer-Aided Diagnosis of Brain Tumors Using a Fine-Tuned YOLO-based Model with Transfer Learning,” KSII Transactions on Internet and Information Systems, vol. 14, pp. 4816–4834, Jan. 2021, doi: 10.3837/tiis.2020.12.011.
dc.source.bibliographicCitationA. B. Arregui Arias, “Detección de cascos de seguridad en tiempo real mediante modelos de Deep Learning,” Real-time hard hat detection by Deep Learning models, May 2023, Accessed: Oct. 01, 2023. [Online]. Available: https://repositorio.upct.es/handle/10317/12477
dc.source.bibliographicCitationF. M. Talaat and H. ZainEldin, “An improved fire detection approach based on YOLO-v8 for smart cities,” Neural Comput & Applic, vol. 35, no. 28, pp. 20939–20954, Oct. 2023, doi: 10.1007/s00521-023-08809-1.
dc.source.bibliographicCitationA. Aboah, B. Wang, U. Bagci, and Y. Adu-Gyamfi, “Real-Time Multi-Class Helmet Violation Detection Using Few-Shot Data Sampling Technique and YOLOv8,” presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5349–5357. Accessed: Oct. 09, 2023. [Online]. Available: https://openaccess.thecvf.com/content/CVPR2023W/AICity/html/Aboah_Real-Time_Multi-Class_Helmet_Violation_Detection_Using_Few-Shot_Data_Sampling_Technique_CVPRW_2023_paper.html
dc.source.bibliographicCitationA. Dumitriu, F. Tatui, F. Miron, R. T. Ionescu, and R. Timofte, “Rip Current Segmentation: A Novel Benchmark and YOLOv8 Baseline Results,” presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1261–1271. Accessed: Oct. 09, 2023. [Online]. Available: https://openaccess.thecvf.com/content/CVPR2023W/NTIRE/html/Dumitriu_Rip_Current_Segmentation_A_Novel_Benchmark_and_YOLOv8_Baseline_Results_CVPRW_2023_paper.html
dc.source.bibliographicCitationJ. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.
dc.source.bibliographicCitationJ. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO: From YOLOv1 and Beyond.” arXiv, Oct. 07, 2023. doi: 10.48550/arXiv.2304.00501.
dc.source.bibliographicCitationJ. Solawetz, F. JAN 11, and 2023 10 Min Read, “What is YOLOv8? The Ultimate Guide.,” Roboflow Blog. Accessed: Nov. 07, 2023. [Online]. Available: https://blog.roboflow.com/whats-new-in-yolov8/
dc.source.bibliographicCitationM. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning Domains: A Survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685, Dec. 2009.
dc.source.bibliographicCitationF. Ramos Pismataro and R. F. Rodríguez, Colombia de cara a los desafíos y oportunidades que representa la migración venezolana. Fundación Konrad Adenauer, 2019. Accessed: Nov. 19, 2023. [Online]. Available: https://repository.urosario.edu.co/handle/10336/30089
dc.source.bibliographicCitationC. F. Collado and P. B. Lucio, “METODOLOGÍA DELA INVESTIGACIÓN”.
dc.source.bibliographicCitationN. Esteban Nieto, “Tipos de Investigación,” Universidad Santo Domingo de Guzmán, Jun. 2018, Accessed: Jun. 10, 2023. [Online]. Available: http://repositorio.usdg.edu.pe/handle/USDG/34
dc.source.bibliographicCitationA. Restrepo Ruiz, “Poder y gestión del suelo estudio de planes parciales en la ciudad de Medellín.,” Dec. 2012, Accessed: Nov. 09, 2023. [Online]. Available: http://repositorio.esumer.edu.co/jspui/handle/esumer/286
dc.source.bibliographicCitation“Avances Revisiòn General.” Accessed: Nov. 07, 2023. [Online]. Available: https://www.alcaldianeiva.gov.co/POT/Paginas/Avances.aspx
dc.source.bibliographicCitation“Plano General Asentamiento Neiva.” Accessed: Nov. 09, 2023. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.alcaldianeiva.gov.co/Gestion/FICHA%20PRELIMINAR%20DE%20ASENTAMIENTOS/PLANO%20GENERAL%20ASENTAMIENTOS%20-%202023.pdf
dc.source.bibliographicCitation“GitHub - HumanSignal/labelImg at pyside6,” GitHub. Accessed: Nov. 09, 2023. [Online]. Available: https://github.com/HumanSignal/labelImg
dc.source.bibliographicCitation“The Official YAML Web Site.” Accessed: Nov. 12, 2023. [Online]. Available: https://yaml.org/
dc.source.bibliographicCitation“Colab Subscription Pricing.” Accessed: Nov. 12, 2023. [Online]. Available: https://colab.research.google.com/signup
dc.source.bibliographicCitationG. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics.” Jan. 2023. Accessed: Nov. 12, 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
dc.source.bibliographicCitation“PT File - What is a .pt file and how do I open it?” Accessed: Nov. 12, 2023. [Online]. Available: https://fileinfo.com/extension/pt
dc.source.bibliographicCitation“Django,” Django Project. Accessed: Nov. 12, 2023. [Online]. Available: https://www.djangoproject.com/
dc.source.bibliographicCitationM. O. contributors Jacob Thornton, and Bootstrap, “Bootstrap.” Accessed: Nov. 13, 2023. [Online]. Available: https://getbootstrap.com/
dc.source.bibliographicCitationPrateek, “Decoding the Confusion Matrix,” KeyToDataScience. Accessed: Jan. 15, 2024. [Online]. Available: https://keytodatascience.com/confusion-matrix/
dc.source.bibliographicCitationD. de Frutos Zafra, “Agente inteligente para monitorización de carreteras.” Accessed: Jan. 20, 2024. [Online]. Available: https://oa.upm.es/75049/
dc.source.bibliographicCitationL. Simon, R. Webster, and J. Rabin, “Revisiting Precision and Recall Definition for Generative Model Evaluation.” arXiv, May 14, 2019. doi: 10.48550/arXiv.1905.05441.
dc.source.bibliographicCitationP. L. K. Ding, Y. Li, and B. Li, “Mean Local Group Average Precision (mLGAP): A New Performance Metric for Hashing-based Retrieval.” arXiv, Nov. 23, 2018. doi: 10.48550/arXiv.1811.09763.
dc.source.bibliographicCitationM. S. Hossain, J. M. Betts, and A. P. Paplinski, “Dual Focal Loss to address class imbalance in semantic segmentation,” Neurocomputing, vol. 462, pp. 69–87, Oct. 2021, doi: 10.1016/j.neucom.2021.07.055.
dc.source.bibliographicCitationO. Kit and M. Lüdeke, “Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 83, pp. 130–137, Sep. 2013, doi: 10.1016/j.isprsjprs.2013.06.009.
dc.source.bibliographicCitation“2.1.8.1 Criterios y Técnicas de Usabilidad.” Accessed: Jan. 23, 2024. [Online]. Available: http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro17/2181_criterios_y_tcnicas_de_usabilidad.html
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectAprendizaje profundo
dc.subjectDetección de asentamientos informales
dc.subjectAprendizaje por transferencia
dc.subjectNeiva
dc.subject.keywordDeep learning
dc.subject.keywordInformal settlement detection
dc.subject.keywordTransfer learning
dc.subject.keywordNeiva
dc.titleSistema inteligente de detección de asentamientos humanos informales en el municipio de Neiva Huila empleando aprendizaje profundo
dc.title.TranslatedTitleIntelligent detection system for informal human settlements in the municipality of Neiva Huila using deep learning
dc.typebachelorThesis
dc.type.spaTrabajo de grado
local.department.reportEscuela de Ciencias e Ingeniería
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Sistema_inteligente_de_deteccion_de_asentamientos_humanos_informales_en_el_Municipio_de_Neiva_Huila_empleando_Aprendizaje_Profundo-Rojas-Henao .pdf
Tamaño:
4.59 MB
Formato:
Adobe Portable Document Format
Descripción: