Ítem
Acceso Abierto

Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia

dc.contributor.advisorRodríguez Burbano, Diana Consuelo
dc.contributor.advisorOndo Méndez, Alejandro Oyono
dc.creatorBorja Vega, Alvaro Jose
dc.creator.degreeIngeniero Biomédicospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-12-11T22:22:24Z
dc.date.available2020-12-11T22:22:24Z
dc.date.created2020-12-07
dc.descriptionLas propiedades que sólo exhiben los materiales con dimensiones manométricas son el fundamento para el desarrollo o mejoría de diferentes aplicaciones biomédicas, como la radioterapia. Los nanomateriales ofrecen la posibilidad de hacer más eficiente esta forma de tratamiento, incrementando la radiosensibilización. Los puntos de carbono son nanopartículas que poseen propiedades físicas, ópticas y químicas que las hacen atractivas para ser implementadas en radioterapia. Sin embargo, al ser un nanomaterial recientemente descubierto, existen muchos campos de la investigación biomédica, como la radioterapia, en los que su potencial uso debe ser estudiado. Este documento de práctica de investigación consta de la realización de la fase inicial de una revisión sistemática de literatura sobre el uso de estas nanopartículas basadas en carbono en radioterapia. Se describe la metodología seguida para identificar la bibliografía más relevante relacionada con el tema, se clasifican de acuerdo a las características principales de la síntesis del nanomaterial y se describe la tendencia actual de las publicaciones relacionadas con el tema objetivo. Es importante mencionar que, al ser la fase inicial de un proyecto de investigación, no se ha terminado y aún se sigue trabajando en éste.spa
dc.description.abstractThe properties that only materials with manometric dimensions exhibit are the basis for the development or improvement of different biomedical applications, such as radiotherapy. Nanomaterials offer the possibility of making this form of treatment more efficient by increasing radiosensitivity. Carbon dots are nanoparticles that possess physical, optical and chemical properties that make them attractive to be implemented in radiotherapy. However, as a newly discovered nanomaterial, there are many fields of biomedical research, such as radiotherapy, in which its potential use should be studied. This research practice document consists of the initial phase of a systematic literature review on the use of these carbon-based nanoparticles in radiotherapy. The methodology followed to identify the most relevant literature related to the topic is described, classified according to the main characteristics of the nanomaterial synthesis and the current trend of publications related to the target topic is detailed. It is important to mention that, as this is the initial phase of a research project, it has not been completed and work is still ongoing.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_30705
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/30705
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentEscuela de Medicina y Ciencias de la Saludspa
dc.publisher.programIngeniería Biomédicaspa
dc.rightsAtribución-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.source.bibliographicCitationP. Zhang, A. Darmon, N. Mohamed and S. Paris, "Radiotherapy-Activated Hafnium OxideNanoparticles Produce Abscopal Effect in a MouseColorectal Cancer Model", International Journal of Nanomedicine, vol. 15, pp. 3843-3850, 2020spa
dc.source.bibliographicCitationR. Baskar, K. Lee, R. Yeo and K. Yeoh, "Cancer and Radiation Therapy: Current Advances and Future Directions", International Journal of Medical Sciences, vol. 9, no. 3, pp. 193-199, 2012spa
dc.source.bibliographicCitationK. Haume et al., "Gold nanoparticles for cancer radiotherapy: a review", Cancer Nanotechnology, vol. 7, no. 1, 2016.spa
dc.source.bibliographicCitationRadiotherapy Risk Profile. World Health Organization, 2008.spa
dc.source.bibliographicCitationD. Kwatra, A. Venugopa and S. Anant, "Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer", Translational Cancer Research, vol. 2, no. 4, 2013.spa
dc.source.bibliographicCitationB. Zhivotovsky, B. Joseph and S. Orrenius, "Tumor Radiosensitivity and Apoptosis", Experimental Cell Research, vol. 248, no. 1, pp. 10-17, 1999.spa
dc.source.bibliographicCitationW. Garcia, "Radiosensibilidad y factores genéticos de riesgo en el cáncer de tiroides", Doctorado, Universidad Autónoma de Barcelona, 2012.spa
dc.source.bibliographicCitationK. Cepeda Forero et al., "Radioresistencia en glioblastoma: papel de la hipoxia en la genotoxicidad inducida por radiaciones ionizantes", Ciencia e Investigación Medico Estudiantil Latinoamericana, vol. 23, no. 1, 2018.spa
dc.source.bibliographicCitationJ. Xie, L. Gong, S. Zhu, Y. Yong, Z. Gu and Y. Zhao, "Emerging Strategies of Nanomaterial‐Mediated Tumor Radiosensitization", Advanced Materials, vol. 31, no. 3, p. 1802244, 2018spa
dc.source.bibliographicCitationS. Lim, W. Shen and Z. Gao, "Carbon quantum dots and their applications", Chemical Society Reviews, vol. 44, no. 1, pp. 362-381, 2015.spa
dc.source.bibliographicCitationN. Kumar and S. Kumbhat, Essentials in nanoscience and nanotechnology. New Jersey, Canada: John Wiley & Sons, Inc., 2016.spa
dc.source.bibliographicCitationM. Molaei, "Carbon quantum dots and their biomedical and therapeutic applications: a review", RSC Advances, vol. 9, no. 12, pp. 6460-6481, 2019.spa
dc.source.bibliographicCitationM. Tuerhong, Y. XU and X. YIN, "Review on Carbon Dots and Their Applications", Chinese Journal of Analytical Chemistry, vol. 45, no. 1, pp. 139-150, 2017.spa
dc.source.bibliographicCitationM. Abeloff, J. Niederhuber, J. Armitage and J. Tepper, Abeloff's Clinical oncology, 5 ed. Saunders, 2014, pp. 393-422.spa
dc.source.bibliographicCitationM. Granados García, A. Martín and J. Hinojosa Gómez, Tratamiento del cáncer. Distrito Federal: Editorial El Manual Moderno, 2016.spa
dc.source.bibliographicCitationM. Beyzadeoglu, G. Ozyigit and C. Ebruli, Basic Radiation Oncology, 1 ed. Springer-Verlag Berlin Heidelberg, 2010.spa
dc.source.bibliographicCitationHorst Frank, Jailbird, Espectro electromagnético. 2016.spa
dc.source.bibliographicCitationW. Potzel et al., "Interference Effects of Radiation Emitted from Nuclear Excitons", Hyperfine Interactions, vol. 151, pp. 263-281, 2003.spa
dc.source.bibliographicCitationS. Bushong, Manual de radiología para técnicos, 11 ed. Barcelona: Elsevier, 2018, pp. 146-162.spa
dc.source.bibliographicCitationM. Joiner and A. Kogel, Basic clinical radiobiology, 4 ed. Boca Raton: CRC Press/Taylor & Francis Group, 2009.spa
dc.source.bibliographicCitationJ. Verdú Rotellar, M. Algara López, P. Foro Arnalot, M. Domínguez Tarragona and A. Blanch Mon, "Atención a los efectos secundarios de la radioterapia", Medifam, vol. 12, no. 7, pp. 426-435, 2002.spa
dc.source.bibliographicCitationP. Devi, S. Saini and K. Kim, "The advanced role of carbon quantum dots in nanomedical applications", Biosensors and Bioelectronics, vol. 141, pp. 1-17, 2019.spa
dc.source.bibliographicCitationK. Ghosal and A. Ghosh, "Carbon dots: The next generation platform for biomedical applications", Materials Science and Engineering: C, vol. 96, pp. 887-903, 2019.spa
dc.source.bibliographicCitationP. Chandra and R. Prakash (Eds.), Nanobiomaterial Engineering. Singapore: Springer Singapore, 2020, pp. 49-70.spa
dc.source.bibliographicCitationS. Dufort et al., "Nebulized Gadolinium-Based Nanoparticles: A Theranostic Approach for Lung Tumor Imaging and Radiosensitization", Small, vol. 11, no. 2, pp. 215-221, 2014.spa
dc.source.bibliographicCitationF. Ferriols Lisart and J. Pitarch Molina, "Principios de la fototerapia y su aplicación en el paciente oncológico", Farmacias Hospitalarias (Madrid), vol. 28, no. 3, pp. 75-83, 2004.spa
dc.source.bibliographicCitationBiblioteca Nicolás Salmerón, La Ecuación de Búsqueda, Almería: Universidad de Almería.spa
dc.source.bibliographicCitationL. Codina, "Ecuaciones de búsqueda: qué son y cómo se utilizan en bases de datos académicas · 1 - Operadores booleanos", Lluís Codina, 2017. [Online]. Available: https://www.lluiscodina.com/ecuaciones-de-busqueda-bases-datos-operadores-booleanos/. [Aceso: 06- Nov- 2020].spa
dc.source.bibliographicCitationL. Codina, Bases de datos académicas para investigar en Comunicación Social: revisiones sistematizadas, grupo óptimo y protocolo de búsqueda, 1st ed. Barcelona: Lecciones del portal, 2017.spa
dc.source.bibliographicCitationUniversidad Politécnica de Valencia, Guía general para búsquedas en bases de datos. Biblioteca y documentación científica, 2017spa
dc.source.bibliographicCitationUniversity of York, "PROSPERO", Crd.york.ac.uk. [Online]. Disponible: https://www.crd.york.ac.uk/prospero.spa
dc.source.bibliographicCitationU.S. National Library of Medicine, "Home - ClinicalTrials.gov", Clinicaltrials.gov. [Online]. Disponible: https://www.clinicaltrials.gov/ct2/home.spa
dc.source.bibliographicCitationF. Jiang et al., "Biocompatible CuO-decorated carbon nanoplatforms for multiplexed imaging and enhanced antitumor efficacy via combined photothermal therapy/chemodynamic therapy/chemotherapy", Science China Materials, vol. 63, no. 9, pp. 1818-1830, 2020.spa
dc.source.bibliographicCitationW. Wang et al., "Multifunctional red carbon dots: a theranostic platform for magnetic resonance imaging and fluorescence imaging-guided chemodynamic therapy", The Analyst, vol. 145, no. 10, pp. 3592-3597, 2020.spa
dc.source.bibliographicCitationN. Irmania, K. Dehvari, G. Gedda, P. Tseng and J. Chang, "Manganese‐doped green tea‐derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform", Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 108, no. 4, pp. 1616-1625, 2020.spa
dc.source.bibliographicCitationB. Geng et al., "Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration", Chemical Engineering Journal, vol. 383, p. 123102, 2020.spa
dc.source.bibliographicCitationY. Shen et al., "Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions", Carbon, vol. 156, pp. 558-567, 2020.spa
dc.source.bibliographicCitationL. Phan et al., "One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells", Biomaterials Science, vol. 7, no. 12, pp. 5187-5196, 2019.spa
dc.source.bibliographicCitationM. Chowdhury, S. Sarkar and P. Das, "Photosensitizer Tailored Surface Functionalized Carbon Dots for Visible Light Induced Targeted Cancer Therapy", ACS Applied Bio Materials, vol. 2, no. 11, pp. 4953-4965, 2019.spa
dc.source.bibliographicCitationY. Zhao et al., "Facile Preparation of Double Rare Earth-Doped Carbon Dots for MRI/CT/FI Multimodal Imaging", ACS Applied Nano Materials, vol. 1, no. 6, pp. 2544-2551, 2018.spa
dc.source.bibliographicCitationZ. Ji et al., "Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma", ACS Biomaterials Science & Engineering, vol. 4, no. 6, pp. 2089-2094, 2018.spa
dc.source.bibliographicCitationN. Licciardello et al., "Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice", Nanoscale, vol. 10, no. 21, pp. 9880-9891, 2018.spa
dc.source.bibliographicCitationQ. Jia et al., "A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2 ‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy", Advanced Materials, vol. 30, no. 13, p. 1706090, 2018.spa
dc.source.bibliographicCitationL. Zhang, Z. Lin, Y. Yu, B. Jiang and X. Shen, "Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy", Journal of Materials Chemistry B, vol. 6, no. 41, pp. 6534-6543, 2018.spa
dc.source.bibliographicCitationF. Du et al., "Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors", Biomaterials, vol. 121, pp. 109-120, 2017.spa
dc.source.bibliographicCitationWhat is Scopus Preview? - Scopus: Access and use Support center, Service.elsevier.com,2020. [Online] .Disponible:https://service.elsevier.com/app/answers/detail/a_id/15534/supporthub/scopus/#tipsspa
dc.source.bibliographicCitationJ. Hu, Q. Lei and X. Zhang, "Recent advances in photonanomedicines for enhanced cancer photodynamic therapy", Progress in Materials Science, vol. 114, 2020.spa
dc.source.bibliographicCitationW. Park, H. Shin, B. Choi, W. Rhim, K. Na and D. Keun Han, "Advanced hybrid nanomaterials for biomedical applications", Progress in Materials Science, vol. 114, 2020.spa
dc.source.bibliographicCitationS. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao and B. Kong, "Hetero-atom-doped carbon dots: Doping strategies, properties and applications", Nano Today, vol. 33, 2020.spa
dc.source.bibliographicCitationX. Gui et al., "Fluorescent hollow mesoporous carbon spheres for drug loading and tumor treatment through 980-nm laser and microwave co-irradiation", Biomaterials, vol. 248, p. 120009, 2020.spa
dc.source.bibliographicCitationM. Magro, A. Venerando, A. Macone, G. Canettieri, E. Agostinelli and F. Vianello, "Nanotechnology-Based Strategies to Develop New Anticancer Therapies", Biomolecules, vol. 10, no. 5, p. 735, 2020.spa
dc.source.bibliographicCitationJ. Yu, X. Loh, Y. Luo, S. Ge, X. Fan and J. Ruan, "Insights into the epigenetic effects of nanomaterials on cells", Biomaterials Science, vol. 8, no. 3, pp. 763-775, 2020.spa
dc.source.bibliographicCitationH. Zhu, N. Ni, S. Govindarajan, X. Ding and D. Leong, "Phototherapy with layered materials derived quantum dots", Nanoscale, vol. 12, no. 1, pp. 43-57, 2020.spa
dc.source.bibliographicCitationL. Dong, W. Li, L. Sun, L. Yu, Y. Chen and G. Hong, "Energy‐converting biomaterials for cancer therapy: Category, efficiency, and biosafety", WIREs Nanomedicine and Nanobiotechnology, 2020.spa
dc.source.bibliographicCitationB. Zhi, X. Yao, Y. Cui, G. Orr and C. Haynes, "Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots", Nanoscale, vol. 11, no. 43, pp. 20411-20428, 2019.spa
dc.source.bibliographicCitationB. Chen, M. Liu, C. Li and C. Huang, "Fluorescent carbon dots functionalization", Advances in Colloid and Interface Science, vol. 270, pp. 165-190, 2019.spa
dc.source.bibliographicCitationD. Lu, R. Tao and Z. Wang, "Carbon-based materials for photodynamic therapy: A mini-review", Frontiers of Chemical Science and Engineering, vol. 13, no. 2, pp. 310-323, 2019.spa
dc.source.bibliographicCitationZ. Zhu et al., "Surface charge controlled nucleoli selective staining with nanoscale carbon dots", PLOS ONE, vol. 14, no. 5, 2019.spa
dc.source.bibliographicCitationB. Yang, Y. Chen and J. Shi, "Reactive Oxygen Species (ROS)-Based Nanomedicine", Chemical Reviews, vol. 119, no. 8, pp. 4881-4985, 2019.spa
dc.source.bibliographicCitationJ. Xie, L. Gong, S. Zhu, Y. Yong, Z. Gu and Y. Zhao, "Emerging Strategies of Nanomaterial‐Mediated Tumor Radiosensitization", Advanced Materials, vol. 31, no. 3, 2018.spa
dc.source.bibliographicCitationJ. Saleem, L. Wang and C. Chen, "Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment", Advanced Healthcare Materials, vol. 7, no. 20, 2018.spa
dc.source.bibliographicCitationS. Zou et al., "Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity", Nanoscale Research Letters, vol. 13, no. 1, 2018.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectFototerapiaspa
dc.subjectRadioterapiaspa
dc.subjectRevisión de literaturaspa
dc.subjectAplicación medica de Nanomaterialesspa
dc.subjectNanotecnología en la medicinaspa
dc.subjectPuntos de Carbono en terapia de radiaciónspa
dc.subject.ddcMedicina experimentalspa
dc.subject.keywordPhototherapyspa
dc.subject.keywordRadiotherapyspa
dc.subject.keywordLiterature Reviewspa
dc.subject.keywordNanomaterials medical applicationspa
dc.subject.keywordNanotechnology in medicinespa
dc.subject.keywordCarbon points in radiation therapyspa
dc.titleFase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapiaspa
dc.title.TranslatedTitleInitial phase of a systematic literature review on the use of carbon dots in radiotherapyeng
dc.typebachelorThesiseng
dc.type.documentRevisión de la literaturaspa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
BorjaVega-AlvaroJose-2020.pdf
Tamaño:
987.97 KB
Formato:
Adobe Portable Document Format
Descripción: